SRM VALLIAMMAI ENGINEERING COLLEGE

(An Autonomous Institution)

S.R.M. Nagar, Kattankulathur - 603203

DEPARTMENT OF MATHEMATICS

QUESTION BANK

IV SEMESTER

CIVIL ENGINEERING MA3421- APPLIED MATHEMATICS FOR CIVIL ENGINEERING

Regulation – 2023

Academic Year – 2024 – 2025

Prepared by

Dr.T.Isaiyarasi, Associate Professor/ Mathematics

SRM VALLIAMMAI ENGINEERING COLLEGE

(An Autonomous Institution) SRM Nagar, Kattankulathur – 603 203.

DEPARTMENT OF MATHEMATICS QUESTION BANK

SUBJECT : MA3421 – APPLIED MATHEMATICS FOR CIVIL ENGINEERING

SEM / YEAR: IV SEMESTER /II YEAR (CIVIL ENGINEERING)

UNIT-I: ORDINARY DIFFERENTIAL EQUATIONS

Higher order linear differential equations with constant coefficients – Method of variation of parameters.

	PART-A (2 Mark Questions)				
Q.No.	Question	Bloom's Taxono my Level	Competence	Course Outcome	
1.	$Solve(D^2 + 5D + 6)y = 0.$	BTL-2	Understanding	CO1	
2.	$Solve(D^2 + 7D + 12)y = 0.$	BTL-2	Understanding	CO1	
3.	Solve $(D^2 + 3D + 2)y = 0$	BTL-2	Understanding	CO1	
4.	$Solve(D-1)^2 y = 0$	BTL-2	Understanding	CO1	
5.	Find the complementary function of $y'' - 4y' + 4y = 0$.	BTL-1	Remembering	CO1	
6.	Find the solution $(D^2 + 2D + 1)y = 0$	BTL-2	Understanding	CO1	
7.	$Solve(D^2 + 1)y = 0.$	BTL-2	Understanding	CO1	
8.	Solve $(D^2 + a^2)y = 0$	BTL-2	Understanding	CO1	
9.	Solve $(D^4 + D^3 + D^2)y = 0$	BTL-2	Understanding	CO1	
10.	$Solve(D^4 - 1)y = 0.$	BTL-2	Understanding	CO1	
11.	Find the complementary function of $(D^2 + 4)y = sin 2x$.	BTL-1	Remembering	CO1	
12.	Estimate the P.I of $(D^3 + 3D^2 + 3D + 1)y = e^{-x}$.	BTL-1	Remembering	CO1	
13.	Solve $(D^3 - 6D^2 + 11D - 6)y$	BTL-1	Remembering	CO1	
14.	Find the particular Integral for $(D^2 - 2D + 1)y = 2e^x$.	BTL-2	Understanding	CO1	
15.	Estimate the P.I of $(D^2 - 4D + 4)y = e^{2x}$	BTL-1	Remembering	CO1	
16.	Find the P.I of $(D^2 + 4D + 5)y = e^{-2x}$	BTL-1	Remembering	CO1	
17.	Estimate the P.I of $(D^2 + 5D + 4)y = sin 2x$.	BTL-2	Understanding	CO1	
18.	Find the P.I of $(D^2 + 1)y = cos2x$	BTL-1	Remembering	CO1	
19.	Find the P.I of $(D^2 + 2)y = x^2$	BTL-1	Remembering	CO1	
20.	Find the P.I. of $(D - a)^2 y = e^{ax} sinx$	BTL-1	Remembering	CO1	
21.	Describe method of variation of parameter	BTL-1	Remembering	CO1	
22.	Write the Wronskian in method of variation of parameter	BTL-1	Remembering	CO1	
23.	Write the value of P in finding particular integral in solving ODE	BTL-1	Remembering	CO1	
	using method of variation of parameter				
24.	Write the value of Q in finding particular integral in solving ODE	BTL-1	Remembering	CO1	
25	Write the formula for finding particular integral in solving ODE	RTI 1	Domomhoring	CO1	
23.	using method of variation of parameter	DIT-I	Kemembering		
	PART-B (16 Mark Ouestions)	l	l	I	

1.(a)	Analyze the solution of $(D^3 - 6D^2 + 11D - 6)y = e^{-2x} + e^{-2x}$	BTL-4	Analyzing	CO1
	e^{-3x}			
1.(b)	Analyze the solution of $(D^2 + 2D + 2)y = e^{-2x} + \cos 2x$.	BTL-4	Analyzing	CO1
2(a)	Analyze the solution of $(D^3 - 1)y = e^{2x}$.	BTL-4	Analyzing	CO1
2(b)	Analyze the solution of $(D^2 + 4) y = cos2x + sin3x$.	BTL-4	Analyzing	CO1
3 (a)	Analyze the solution of $(2D^3 - D^2 + 4D - 2)y = e^x$	BTL-4	Analyzing	CO1
3(b)	Analyze the solution of $(D^2 + 3D + 2)y = sin3x$.	BTL-4	Analyzing	CO1
4 (a)	Analyze the solution of $(4D^2 + 4D - 3)y = e^{2x}$	BTL-4	Analyzing	CO1
4(b)	Analyze the solution of $(D^2 + 4)y = sin^3x + \cos 2x$.	BTL-4	Analyzing	CO1
5 (a)	Analyze the solution of $(D^2 + 1)y = sinx \sin 2x$.	BTL-4	Analyzing	CO1
5(b)	Analyze the solution of $(D^2 - 6D + 9)y = 2x^2 - x + 3$	BTL-4	Analyzing	CO1
6(a)	Analyze the solution of $(D^2 - 2D + 5)y = e^x \cos 2x$	BTL-4	Analyzing	CO1
6(b)	Analyze the solution of $(D^2 - 4D + 4)y = e^{-4x} + 5\cos 3x$	BTL-4	Analyzing	CO1
7 (a)	Analyze the solution of $(D^2 + 5D + 4)y = 4e^{-x} + x$	BTL-4	Analyzing	CO1
7(b)	Analyze the solution of $(D^2 + 4D + 3)y = e^{-x}sinx$	BTL-4	Analyzing	CO1
8 (a)	Analyze the solution of $(D^2 + 2D + 1)y = e^{-x}x^2$	BTL-4	Analyzing	CO1
8(b)	Analyze the solution of $(D^2 + 4)y = x^2 \cos 2x$.	BTL-4	Analyzing	CO1
9(a)	Analyze the solution of $(D^2 + 4D - 12)y = (x - 1)e^{2x}$	BTL-4	Analyzing	CO1
9(b)	Analyze the solution of $(D^2 + 1)y = xcosx$	BTL-4	Analyzing	CO1
	Apply method of variation of parameters to solve	BTL-3	Applying	CO1
10	y'' + y = tanx			
11	y + y - tank	DTI 2	A 1	<u> </u>
11.	Apply method of variation of parameters to solve	BIL-3	Applying	COI
	$(D^2 + a^2)y = tanax$			
12	Apply method of variation of parameters to solve	BTL-3	Applying	CO1
	y'' + y = cotx			
13.	Apply method of variation of parameters to solve	BTL-3	Applying	CO1
	$(D^2 + a^2)y = secar$			
14	Using the method of variation of parameter solve	RTI _3	Applying	CO1
17,	a^{3x}	DIL-J	Applying	COI
	$(D^2 - 6D + 9)y = \frac{e}{2}$			
15	$\frac{\chi^2}{\chi^2}$	DTI 2	A 1 •	001
15.	Using the method of variation of parameter solve $-r$	BIL-3	Applying	
	$(D^2 + 2D + 1)y = \frac{e^{-x}}{x^2}$			
16.	Solve the differential equation $y'' - 2y' + 2y = e^x tanx$ by	BTL-3	Applying	CO1
	method of variation of parameters			
17.	Apply method of variation of parameters to solve	BTL-3	Applying	CO1
	$(D^2 + a^2)y = cosecax$			
18.	Apply method of variation of parameters to solve	BTL-3	Applving	CO1
	$(D^2 + 1)y = \sec x$		rr-J8	
UNIT-II: AFFLICATION OF OKDINAKY DIFFEKENTIAL EQUATIONS				
Solution of ODE related to bending of beams, motion of a particle in a resisting medium and simple harmonic				
motion		Bloom's		Course
Q.No.	Question	Taxono	Competence	Outcome

		my		
	PART-A	Level		
1.	What is elastic curve in the theory of bending of beams?	BTL-1	Remembering	CO2
2.	State Bernoulli- Euler law in the theory of bending of beams	BTL-1	Remembering	CO2
3.	Write down the assumptions in bending of beams	BTL-2	Understanding	CO2
4.	Write down different forms of beams	BTL-2	Understanding	CO2
5.	What are the boundary conditions at a freely supported end of a beam?	BTL-2	Understanding	CO2
6.	What are the boundary conditions at the end of a beam fixed horizontally?	BTL-1	Remembering	CO2
7.	What are the boundary conditions at the end of a beam that is perfectly free?	BTL-1	Remembering	CO2
8.	Write down three different forms of the differential equation of motion of a particle which falls under gravity in a resisting medium, in which resistance is proportional to the n th power of its velocity.	BTL-1	Remembering	CO2
9.	Write down three different forms of the differential equation of motion of a particle which is projected vertically upwards in a resisting medium, in which resistance is proportional to the n th power of its velocity.	BTL-1	Remembering	CO2
10.	Define limiting velocity of a particle in a resisting medium and write down its value for a medium (kv^n)	BTL-2	Understanding	CO2
11.	Define simple harmonic motion	BTL-2	Understanding	CO2
12.	Write down the equation of motion of a particle executing SHM?	BTL-2	Understanding	CO2
13.	If a particle executes SHM, write down the expressions for its displacement from the mean position.	BTL-2	Understanding	CO2
14.	If a particle executes SHM, write down the expressions for its velocity t from the mean position.	BTL-2	Understanding	CO2
15.	If a particle executes SHM, what is the period of oscillations	BTL-2	Understanding	CO2
16.	Write down the form of the equation of motion of a particle that executes damped free oscillations.	BTL-1	Remembering	CO2
17.	Write down the form of equation of motion of a particle that executes forced oscillations with damping	BTL-1	Remembering	CO2
18.	A simply supported beam of span 'L' is subjected to a point load 'W' at the center. What is the deflection at the center?	BTL-1	Remembering	CO2
19.	In a cantilever beam, where is the slope and deflection is maximum?	BTL-1	Remembering	CO2
20.	Solve the differential equation $\frac{d^2x}{dt^2} = -kmx$ where , $n^2 = km$.	BTL-1	Remembering	CO2
21.	Assume an object weighing 2 lb stretches a spring 6 in. Find the equation of motion if the spring is released from the equilibrium position with an upward velocity of 16 ft/sec. What is the period of the motion?	BTL-1	Remembering	CO2
22.	What is the differential equation of the simple harmonic motion given by $x=A\cos(nt+\alpha)$?	BTL-2	Understanding	CO2

23.	Write the equation that represents a simple harmonic motion?	BTL-2	Understanding	CO2
	The displacement of the system from the equilibrium position is			
24.	What is the time period of the simple harmonic motion	BTL-2	Understanding	CO2
	represented by the equation $\frac{d^2x}{dt^2} + \alpha x = 0$?			
25.	The equation of simple harmonic motion of a particle is $\frac{d^2x}{dt^2}$ +	BTL-2	Understanding	CO2
	$0.2 \frac{dx}{dt} + 35x = 0$. What is its time period approximately?			
	PART-B (16 Mark Questions)		I I	
1.	The differential equation satisfied by a beam with a uniform loading w kg/m with one end fixed and the other end subject	BTL-3	Applying	CO2
	tensile force P is given by $EI \frac{d^2y}{dt} = Py - \frac{1}{2}wx^2$. Find the			
	equation to the elastic curve subject to the boundary conditions			
	$y=0$ at $x=0$ and $\frac{dy}{dx}=0$ at $x=0$			
	A beam of length 21 with uniform load w per unit length is	BTL-3	Applying	CO2
2	supported at both ends. The deflection y at a distance x is given $d^2y = w^2 x^2 + w^2 x^2 + w^2 x^2 + w^2 x^2 + w^2 $			
2.	by $EI \frac{dy}{dx^2} = \frac{dw}{2}(x - 2l)$. Assuming y = 0 at x = 0 and x=2l.			
	Show that the maximum deflection is $\frac{5Wl^2}{24EI}$			
	A light horizontal strut of length l is freely pinned at the two ends.	BTL-4	Analyzing	CO2
	rwo equal and opposite compressive forces P at the ends and a concentrated load W act at the center. The differential equation			
3.	satisfied by the deflection of the strut is $EI \frac{d^2y}{dt} = -Py - \frac{1}{2}wx$.			
	Analyze the deflection at the mid-point and magnitude of the			
	maximum bending moment.			
	A horizontal tie-rod is freely pinned at each end. It carries uniform load w kg per unit length and has a horizontal pull P	BTL-3	Applying	CO2
1	The differential equation satisfied by the rod is $FI \frac{d^2y}{dt^2} - Py = 0$			
4.	The unrefer that equation satisfied by the rout is $LT \frac{dx^2}{dx^2} = Ty^2 - \frac{w}{dx^2} \frac{dx^2}{dx^2} = \frac{dx}{dx^2}$			
	$\frac{1}{2}(x - tx)$. Analyze the central deflection and the maximum bending moment, taking the origin as the one of its ends			
	A cantilever beam of length l and weighing ω lb / unit is	BTL-4	Analyzing	CO2
_	subjected to a horizontal compressive force P applied at the free			
5.	end. Taking the origin at the free end and $y - axis upwards$ establish the differential equation of the beam and hence find the			
	maximum deflection.			
	A beam of the length 2a ft. has its ends fixed horizontally	BTL-3	Applying	CO2
6.	carrying a load of ω <i>lb</i> . Per foot. The deflection y at a distance x			
	from one end is given by the equation $\frac{dy}{dx^2} = \frac{dy}{dET}(2a^2 - 6ax + 1)$			
	$3x^2$). Find one the maximum deflection.	RTI _4	Anglyzing	<u> </u>
-	ends, carries a uniformly distributed load w per unit length. If	DIL-4	Anaryzing	02
7.	the thrust at each end is P. Derive the maximum deflection and			
	also the magnitude maximum bending moment.	рті 🤉	A nulvia a	CO2
8.	A concentrated vertical load w is suspended at the inidpoint a horizontal beam of length 21 with a uniform load ω per unit	DIL-J	Apprying	02

	length, when it is freely supported at both ends. If the differential			
	equation of the deflection y of any point of the beam, that is at a			
	distance of x from one end, is given by			
	$EI \frac{d^2y}{dx^2} = \frac{wx^2}{2} - (\frac{W}{2} + l\omega)x$. Find the maximum deflection,			
	assuming y=0 when x =0 and $\frac{dy}{dx} = 0$ when x = 1.			
	A cantilever beam of length l, with uniform load ω per unit	BTL-3	Applying	CO2
	length has a concentrated load W at the free end. Taking the			
	origin at the fixed end the differential equation is given by			
9.	$EI \frac{d^2y}{dx^2} = W(l-x) + \frac{\omega(l-x)^2}{2}$. Determine the maximum			
	deflection, assuming $y = 0$ when $x = 0$ and $\frac{dy}{dx} = 0$ when			
	x = 0.			
	The differential equation $\frac{d^2x}{dt^2} + 5\frac{dy}{dx} + 4x = 0$ represents the	BTL-4	Analyzing	CO2
	damped harmonic oscillations of a particle is at a distance of 1			
10	unit from the origin and its speed away from the origin is 2 units.			
	Prove that the particle will be at its greatest distance from the			
	origin after a time $\frac{1}{3}log2$. Find the greatest distance			
11.	The differential equation of motion of a particle, which executes forced	BTL-4	Analyzing	CO2
	oscillations without damping is $\frac{d^2x}{dx^2} + k^2x = k^2asinnt$. Find the			
	displacement x of the particle at time t, when $n \neq k$ given that the			
	particle starts from rest from the origin initially.			
12	The differential equation of motion of a particle, which executes forced	BTL-3	Applying	CO2
	oscillations with damping is $\frac{d^2x}{dt^2} + k\frac{dx}{dt} + n^2x = n^2asinnt$ (k<2n). If			
	the particle starts from rest the origin initially, find the displacement of			
	the particle at time t.			~ ~ ~ ~
13.	A particle is projected with velocity V directly away from a fixed	BTL-4	Analyzing	CO2
	point at a distance b from it. If the acceleration be μ times the			
	fixed point find the amplitude of the SHM			
14.	A particle is executing a Simple Harmonic Motion about the	BTL-3	Annlying	CO2
1.0	origin 0, from which the distance x of the particle is measured.		··PP-J8	002
	Initially $x = 20$ and velocity = 0 and the equation of motion is			
	$\ddot{x} + x = 0$; Solve for x and find period and amplitude			
15.	Assume an object weighing 2 lb stretches a spring 6 in. Find the	BTL-4	Analyzing	CO2
	equation of motion if the spring is released from the equilibrium			
	position with an upward velocity of 16 ft/sec. What is the period			
16	of the motion?	DTI A		000
16.	A body weighing 20 kg is hung from a spring. A pull of 40 kg	BTL-3	Applying	CO2
	by 20 cm below the static equilibrium position and then released			
	Find the displacement of the body from its equilibrium position			
	at time t seconds, the maximum velocity and the period of			
	oscillation.			
17.	In case of a stretched elastic horizontal string which has one end	BTL-3	Applying	CO2
	fixed and a particle of mass m attached to the other, find the		2	
	equation of motion of the particle given that f is the natural length			

	of the string and e is the elongation due to weight mg. Also, find			
	the displacement of particle when initially $s = 0, v = 0$.			
18.	A particle of mass m lying on a smooth horizontal table is	BTL-4	Analyzing	CO2
	attached to two elastic strings whose natural lengths are l_1 and l_2			
	and moduli λ_1 and λ_2 respectively. The other ends of the strings			
	are fixed to two points on the table at a distance greater than			
	$l_1 + l_2$. Show that if the particle vibrates in the line of the string			
	, its period will be $2\pi \sqrt{\frac{m}{\left(\frac{\lambda_1}{2} + \frac{\lambda_2}{2}\right)}}$			
	$(l_1 l_2)$			
UNIT	- III Classification of PDE - Solutions of one dimensional wave	equation		
		Bloom's		Course
O No	Question	Taxono	Competence	Outcome
Q.110.	Question	my	competence	
	BART A (2 Monte Questions)	Level		
1	PARI-A (2 Mark Questions)	RTI_2	Understanding	CO 3
1.	Classify the FDE $u_{xx} + u_{xy} + u_{yy} = 0$	DIL -2	Understanding	
2.	Classify the PDE $Z_{xx} + 2Z_{xy} + (1 - y^2)Z_{yy} + xZ_x +$	BTL -2	Understanding	CO 3
	$3x^2yz - 2Z = 0$			
3.	Classify the PDE $u_{xx} + u_{xy} = f(x, y)$.	BTL -2	Understanding	CO 3
4.	Classify the PDE	BTL -2	Understanding	CO 3
	$(1 - x^2)z_{xx} - 2xyz_{xy} + (1 - y^2)z_{yy} + xy^2z_y - 2z = 0.$			
5.	Classify the PDE $u_{xx} = u_{yy}$	BTL -2	Understanding	CO3
6.	Classify the PDE $u_{xy} = u_x u_y + xy$	BTL -2	Understanding	CO3
7.	Classify the PDE $4u_{xx} + 4u_{xy} + u_{yy} - 6u_x - 8u_y = 0$	BTL -2	Understanding	CO3
8.	Classify the PDE $u_{xx} - y^4 u_{yy} = 2y^3 u_y$	BTL -1	Remembering	CO3
9.	State the assumptions in deriving the one-dimensional heat	BTL -1	Remembering	CO3
	equation			
10.	Write down the governing equation of one dimensional wave	BTL -1	Remembering	CO3
11	equation.	DTI 1	Dama and and a	CO2
11.	what are the various solutions of one-dimensional wave	BIL-I	Remembering	COS
12.	What is the suitable solution for one dimensional wave equation	BTL -2	Understanding	CO3
13.	In the wave equation $\frac{\partial^2 y}{\partial x^2} = C^2 \frac{\partial^2 y}{\partial x^2}$ what does C^2 stand for?	BTL -2	Understanding	CO 3
14	Write the boundary conditions and initial conditions for solving	рті 🤈	Undonstanding	<u> </u>
14.	while the boundary conditions and initial conditions for solving	D1L-2	Understanding	CUS
	the violation of string equation, if the string is subjected to initial displacement $f(x)$ and initial string is $x = 1$.			
	displacement $f(x)$ and initial velocity $g(x)$		T T T - T	000
15.	write the initial conditions of the wave equation if the string has	BTL -2	Understanding	CO3
	an initial displacement but no initial velocity.			
16.	Write down the initial conditions when a taut string of length	BTL -2	Understanding	CO3
	2l is fastened on both ends. The midpoint of the string is taken to			
17	a neight b and released from the rest in that position	DTI 2	Undonstanding	<u> </u>
1/.	A singuly subtract string of length t has its ends fastened at $x = 0$ and $x = 1$ is initially in a position given by	D1L-2	Understanding	CUS
	1 x - 0 and $x - t$ is initially in a position given by			

	$y(x, 0) = y_0 \sin^3 \frac{\pi x}{r}$. If it is released from rest from this position,			
	write the boundary conditions			
18.	A tightly stretched string with end points $x = 0 \& x = l$ is	BTL -2	Understanding	CO3
	initially at rest in equilibrium position. If it is set vibrating giving			
	each point velocity $\lambda x(l-x)$. Write the initial and boundary			
10	conditions	DTLA	X X X	000
19.	If the ends of a string of length l are fixed at both sides. The midmoint of the string is displaced transversely through a height	BTL -2	Understanding	CO3
	h and the string is released from rest state the initial and			
	boundary conditions			
20.	A stretched string of length 10 cm is fastened at both ends. The	BTL -2	Understanding	CO3
	mid-point of the string is taken to a height 5 cm and then released			
	from rest in that position. Write the governing equations with			
	boundary conditions that satisfies to the wave generated.			~~~
21.	A tightly stretched string with fixed end points $x = 0$ and	BTL -2	Understanding	CO3
	x = l is initially in a position given by $y(x, 0) = 3x (l - x)$. If			
	it is released from this position, write the initial and boundary			
	conditions.			
22.	A taut string of length 20 cm fastened at both ends, is disturbed	BTL -2	Understanding	CO3
	from its position of equilibrium by imparting to each of its points			
	an initial velocity of magnitude $kx(20 - x)$ for $0 < x < 20$.			
	Formulate the problem mathematically			
23.	A taut string of length 50 cm fastened at both ends, is disturbed	BTL -2	Understanding	CO3
	from its position of equilibrium by imparting to each of its points			
	an initial velocity of magnitude kx for $0 < x < 50$. Formulate the			
	problem mathematically			
24.	A tightly stretched string with fixed end points $x=0$ and $x = 50$	BTL -2	Understanding	CO3
	is initially at rest in its equilibrium position. If it is set to vibrate			
	by giving each point a velocity $v = v_0 \sin^3 \frac{d}{l}$. Write the initial			
	and boundary conditions			~~~
25.	A tightly stretched string with fixed end points $x=0$ and $x = 50$	BTL -2	Understanding	CO3
	is initially at rest in its equilibrium position. If it is set to vibrate $\pi x = \frac{2\pi x}{2\pi x}$			
	by giving each point a velocity $v = v_0 \sin \frac{1}{50} \cos \frac{1}{50}$. Write the			
	initial and boundary conditions			
	PARI-B (16 Mark Questions)	DTI 4		000
1.	A string is stretched and fastened to two points that are distinct string <i>L</i> apart. Motion is started by displacing the string into the	BIL-3	Applying	003
	form $y = k(lx - x^2)$ from which it is released at time $t = 0$			
	Obtain the displacement of any point on the string at a distance			
	of x from one end at time t.			
2.	A slightly stretched string of length <i>l</i> has its ends fastened at	BTL-3	Applying	CO3
	x = 0 and $x = l$ is initially in a position given by $y(x, 0) =$		~	
	$y_0 sin^3 \frac{\pi x}{r}$. If it is released from rest from this position, Determine			
	the displacement y at any distance x from one end and at any			
	time.			

3.	A tightly stretched string with fixed end points $x = 0$ and $x = l$	BTL-3	Applying	CO3
	is initially at rest in its equilibrium position. If it is set vibrating			
	string giving each point a velocity $3x(l-x)$. Determine the displacement of the string			
4.	A uniform string is stretched and fastened to two points I apart	BTL-3	Applying	CO3
	motion is started by displacing the string into the form of			000
	curve $y = asin \frac{\pi x}{r}$ at time t = 0. Derive the expression for the			
	displacement of any point of the string at a distance x from one			
	end at time			
5.	A tightly stretched string of length $2l$ is fastened at both ends.	BTL-3	Applying	CO3
	The Midpoint of the string is displaced by a distance b transversely and the string is released from rest in this position			
	Derive an expression for the transverse displacement of the string			
	at any time during the subsequent motion.			
6.	A string is tightly stretched between $x = 0$ and $x = 20$ is	BTL-3	Applying	CO3
	fastened at both ends. The midpoint of the string is taken to be a			
	height and then released from rest in that position. Deduce the displacement of any point of the string y at any time t			
7	The points of trigoction of a tightly stratehod string of length 20	рті <i>1</i>	Anglyzing	CO3
/.	cm with fixed ends pulled aside through a distance of 1 cm on	D1L-4	Anaryzing	005
	opposite sides of the position of equilibrium and the string is			
	released from rest. Analyze expression for the displacement of			
	the string at any subsequent time. Show also that the midpoint of			
	the string remains always at rest.			
8.	A uniform elastic string of length 60 cms is subjected to a	BTL-4	Analyzing	CO3
	constant tension of 2 kg. If the ends are fixed and the initial			
	displacement $y(x, 0), 0 = 60x - x^2, 0 < x < 60$, while the			
	initial is zero, Analyze the displacement function $y(x, t)$			
9.	A uniform string of density ρ stretched to the tension $\rho \alpha^2$	BTL-3	Applying	CO3
	executes small transverse vibration in a plane through the			
	undisturbed line of the string. The ends $x = 0$ and $x = l$ are			
	fixed. One end is taken at the origin and at a distance b from this			
	end the string is displaced a distance d transversely and is			
	released from rest from this position. Obtain the equation of the			
10	subsequent motion by applying Fourier series	DTI 4	Analyzing	CO3
10.	A ugnity succeed suring of length t is initially at rest in this equilibrium position and each of its points is given the velocity	D1L-4	Analyzing	005
	equinorium position and each of its points is given the velocity $\sqrt{\pi x}$			
	$v_0 \sin^3 \frac{\lambda x}{l}$. Analyze the displacement $y(x, t)$.			
11.	A tightly stretched string with fixed end points $x=0$ and $x=l$ is	BTL-4	Analyzing	CO3
	initially at rest in its equilibrium position. If it is set vibrating			
	$\int \frac{2kx}{l} in(0,l/2)$			
	giving each point a velocity $v = \begin{cases} \frac{2k(l-x)}{l} & \text{in } (l/2, l) \end{cases}$, Derive			

Q.No.	Question	Bloom's Taxono	Competence	Course Outcome
			•	
One dir	De dimensional equation of heat conduction- Zero and Non zero boundary conditions			
	IV: APPLICATIONS OF PARTIAL DIFFERENTIAL EQ	UATIONS	5 - ONE DIME	NSIONAL
	displacement function $y(x, t)$			
	every point of the string in this position at time $t = 0$. Analyze the			
	y = x (l - x) and also by imparting a constant velocity k to			
	started by displacing the string into the form of the curve			
18.	A string is stretched and fastened to two points l apart. Motion is	BTL-4	Analyzing	CO3
	l			
	$v_0 \sin \frac{\pi x}{2} (iv) v(x 0) = v_0 \sin \frac{2\pi x}{2}$			
	conditions(<i>i</i>) $y(0, t) = 0$, (<i>ii</i>) $y(l, t) = 0$, (<i>iii</i>) $\frac{\partial y}{\partial t}(x, 0) =$			
17.	Solve the problem of vibrating string for the following boundary	BTL-3	Applying	CO3
	y(x, t) by applying Fourier series			
	by giving each of its position a velocity $v = \lambda(lx - x^2)$. Obtain			
10.	infinitely at rest in the equilibrium position. If it is set vibrating	D1L-3	Apprying	0.05
16	of the string at any time. A tightly stretched string with fixed end points $y = 0$ and $y = 1$ is	RTI -3	Annlying	C03
	X being a distance from an end point. Analyze the displacement			
	$(\frac{30}{30}(00-x), in 30 < x < 00)$			
	$v = \begin{cases} \lambda \\ \lambda \\ (60 - x) \\ in 30 < x < 60 \end{cases}$			
	$\frac{300}{30}$, in $0 < x < 30$			
	(λx)			
15.	A suring is stretched between two fixed points at a distance of 60 cm and the points of the string are given initial valorities y, where	В1L-4	Analyzing	003
15	function $y(x, t)$ by applying Fourier series	DTI 4	A a	CO2
	velocity of magnitude $k(2lx - x^2)$. Find the displacement			
	its position of equilibrium by imparting to each points an initial			
14.	A taut string of length $2l$, fastened at both ends, is disturbed from	BTL-3	Applying	CO3
	end at any instant t.			
	the displacement of the string at a point at a distance x from one			
	by giving each point a velocity $v = v_0 \sin \frac{\pi x}{\pi^2} \cos \frac{2\pi x}{\pi^2}$. Analyze			
13.	is initially at rest in its equilibrium position. If it is set to vibrate	D1L-4	Analy2111g	005
13	distance x from one end at any instant t. A tightly stretched string with fixed and points $x=0$ and $x=50$.	RTI _4	Analyzing	CO3
	x < 1. Deduce the displacement of the string at a point at a			
	each point a velocity $y_t(x, 0) = v_0 sin\left(\frac{3\pi x}{l}\right) cos\left(\frac{\pi x}{l}\right)$ where 0 <			
	at rest in its equilibrium position. If it is set vibrating by giving			
12.	A tightly stretched string of length l with fixed end points initially	BTL-4	Analyzing	CO3
	the displacement of a string at any distance x from one end at any time t			
	the displacement of a string of any distance y from one and at any			

		my Level		
	PART-A (2 Mark Questions)	Level		
1.	In one dimensional heat equation $\frac{\partial u}{\partial t} = C^2 \frac{\partial^2 u}{\partial x^2}$, what does C ² stand for?	BTL -2	Understanding	CO4
2.	State the assumptions in deriving the one-dimensional heat equation.	BTL -1	Remembering	CO4
3.	What are the possible solutions of one-dimensional heat flow equation?	BTL -1	Remembering	CO4
4.	Write down the governing equation of one-dimensional steady state heat equation.	BTL -1	Remembering	CO4
5.	The ends A and B of a rod of length 20 cm long have their temperature kept 30° C and 80° C until steady state prevails. Find the steady state temperature on the rod.	BTL -2	Understanding	CO4
6.	An insulated rod of length 60 cm has its ends at A and B maintained at 20° C and 80° C respectively. Find the steady state solution of the rod.	BTL -2	Understanding	CO4
7.	An insulated rod of length l cm has its ends at A and B maintained at 30° C and 80° C respectively. Find the steady state solution of the rod.	BTL -2	Understanding	CO4
8	How many boundary conditions are required to solve $\frac{\partial u}{\partial t} = C^2 \frac{\partial^2 u}{\partial x^2}$?	BTL -1	Remembering	CO4
9.	State Fourier law of heat conduction.	BTL -1	Remembering	CO4
10.	Explain the initial and boundary value problems.	BTL -2	Understanding	CO4
11.	An insulated rod of length 50 cm has its ends at A and B maintained at 20° C and 70° C respectively. Find the steady state solution of the rod.	BTL -2	Understanding	CO4
12.	The ends A and B of a rod of length 10 cm long have their temperature kept 50° C and 100° C until steady state prevails. Find the steady state temperature on the rod.	BTL -2	Understanding	CO4
13.	An insulated rod of length 30 cm has its ends at A and B maintained at 40° C and 90° C respectively. Find the steady state solution of the rod.	BTL -2	Understanding	CO4
14.	An insulated rod of length l cm has its ends at A and B maintained at 60° C and 180° C respectively. Find the steady state solution of the rod.	BTL -2	Understanding	CO4
15.	Explain steady state and unsteady state differential equations.	BTL -2	Understanding	CO4
16.	Write the solution in respect of one-dimensional heat conduction problem in steady state.	BTL -1	Remembering	CO4
17.	A bar 20 cm long with insulated sides has its ends A and B maintained at temperature 20 ^o C and 40 ^o C respectively until steady state conditions prevail. Find the steady state temperature of the rod.	BTL -2	Understanding	CO4
18.	A rod 30 cm long has its ends A and B kept at 20° and 80° respectively until steady state conditions prevail. The temperature at each end is then suddenly reduced to 0° C and kept so. Write down the boundary and initial conditions?	BTL -2	Understanding	CO4

	Two ends A and B of a rod of length 20cm have the temperatures	BTL -2	Understanding	CO4
	at 30° C and 80° C respectively until steady state conditions			
19.	prevail. Then the temperatures at the ends A and B are changed			
	to 40° C and 60° C respectively. Write down the boundary and			
	initial conditions?			
	A rod of length 'l' has its ends A and B kept at 0° C and 120° C	BTL -1	Remembering	CO4
20.	respectively until steady state conditions prevail. If the			
20.	temperature at B is reduced to 0^{0} C and kept so while that of A			
	is maintained. Write down the boundary and initial conditions?			
	A bar 10 cm long with insulated sides has its ends A and B	BTL -2	Understanding	CO4
21.	maintained at temperature 50°C and 100°C respectively until			
	steady state conditions prevail. The temperature at A is			
	suddenly raised to 90° C and at the same time lowered to 60° C at			
	B. Write down the boundary and initial conditions?			
	Two ends A and B of a rod of length 30cm have the temperatures	BTL -1	Remembering	CO4
22.	at 25°C and 85°C respectively until steady state conditions			
	prevail. Then the temperatures at the ends A and B are changed			
	to 30° C and 70° C respectively. Write down the boundary and			
	initial conditions?			
23.	A rod of length 50 cm has its ends A and B kept at 35 ^o C and	BTL -2	Understanding	CO4
	55° C respectively until steady state conditions prevail. If the			
	temperature at B is reduced to 0^{0} C and kept so while that of A			
	is maintained. Write down the boundary and initial conditions?			
	Two ends A and B of a rod of length 100cm have the	BTL -1	Remembering	CO4
	temperatures at 250°C and 500°C respectively until steady state			
24.	conditions prevail. Then the temperatures at the ends A and B			
	are changed to 300°C and 450°C respectively. Write down the			
	boundary and initial conditions?			
	The ends A and B of a rod 20 cm long have the temperature at	BTL -2	Understanding	CO4
	30°C and 90°C respectively until steady state conditions prevail.			
25.	If the temperature at B is reduced to 0°C and kept so while that			
	of A is maintained. Write down the boundary and initial			
	conditions?			
	PART-B (16 Marks Questions)			
	The initial temperature in a bar with ends $x = 0$ and $x = \pi$ is	BTL -3	Applying	CO4
1.	$u = \sin x$.			
	If the lateral surface is insulated and the ends are held at zero			
	temperature, find the temperature $u(x, t)$.			
	Solve $\frac{\partial u}{\partial u} = C^2 \frac{\partial^2 u}{\partial u}$ subject to the conditions	BTL -4	Analyzing	CO4
	$\partial t = \partial t^2$ ∂x^2			
	(i) $u(0,t)=0$ for all $t \ge 0$			
2.	(ii) $u(\pi, t) = 0$ for all $t \ge 0$			
	$(x, 0 < x \leq \frac{\pi}{2})$			
	(iii) $u(x,0) = \begin{cases} \pi & 2 \\ \pi & x \\ z & z \end{cases} \text{ for all } x \ge 0$			
	$(\pi - x), \frac{1}{2} < x \le \pi$			
	Solve $\frac{\partial u}{\partial u} = C^2 \frac{\partial^2 u}{\partial u}$ subject to the conditions	BTL -3	Applying	CO4
3	$\partial t = \partial x^2$ subject to the conditions			
5.	(i) $u(0,t)=0$ for all $t \ge 0$ (ii) $u(l,t) = 0$ for all $t \ge 0$			
	(iii) $u(x,0) = kx(l-x)$ for all $x \ge 0$			

	Solve $\frac{\partial u}{\partial u} = C^2 \frac{\partial^2 u}{\partial u}$ subject to the conditions	BTL -4	Analyzing	CO4
	$\frac{\partial \partial t}{\partial t} = C - \frac{\partial x^2}{\partial x^2}$ subject to the conditions			
4.	(i) $u(0,t)=0$ for all $t \ge 0$ (ii) $u(l,t) = 0$ for all $t \ge 0$			
	$(\text{iii})_{u}(x,0) = \begin{cases} x, \ 0 < x \le \frac{l}{2} \\ l - x, \ \frac{l}{2} < x \le l \end{cases} \text{ for all } x \ge 0$			
	Solve $\frac{\partial u}{\partial u} = C^2 \frac{\partial^2 u}{\partial u}$ subject to the conditions	BTL -3	Applying	CO4
5.	$\partial t = \partial x^2$ subject to the conditions			
	(i) $u(0,t)=0$ for all $t \ge 0$ (ii) $u(l,t) = 0$ for all $t \ge 0$			
	$(ii)_u(x,0) = 3 \sin \frac{\pi}{l} \text{ for all } x \ge 0$			
	Solve $\frac{\partial u}{\partial u} = C^2 \frac{\partial^2 u}{\partial u}$ subject to the conditions	BTL -4	Analyzing	CO4
6.	$\partial t \partial x^2$			
	(1) $u(0,t)=0$ for all $t \ge 0$ (1) $u(l,t) = 0$ for all $t \ge 0$			
	$(111)_{u}(x,0) = 5 \sin \frac{1}{t}$ for all $x \ge 0$	DEX 0		
	A rod 30 cm long has its ends A and B kept at 20° and 80° respectively, until steady state conditions prevail. The	BTL -3	Applying	CO4
7.	temperature at each end is then suddenly reduced to 0° C and kept			
	so. Find the resulting temperature function $u(x, t)$ taking $x = 0$ at			
	A.			
	A rod of length l' has its ends A and B kept at 0° C and 120° C	BTL -4	Analyzing	CO4
8.	respectively until steady state conditions prevail. If the temperature at B is reduced to 0^{0} C and kept so while that of A is			
	maintained, find the temperature distribution of the rod.			
	The ends A and B of a rod 20 cm long have the temperature at	BTL -4	Analyzing	CO4
	30° C and 90° C respectively until steady state conditions prevail.			
9.	If the temperature at B is reduced to 0° C and kept so while that			
	any subsequent time			
	The ends A and B of a rod 50 cm long have the temperature at	BTL -4	Analyzing	CO4
	0^{0} C and 100^{0} C respectively until steady state conditions prevail.		• 0	
10.	If the temperature at B is reduced to 0° C and kept so while that			
	of A is maintained, find the temperature distribution of the rod at			
	A rod of length l' has its ends A and B kept at 0° C and 250° C	BTL -4	Analyzing	CO4
11	respectively until steady state conditions prevail. If the		g	
11.	temperature at B is reduced to 0^{0} C and kept so while that of A is			
	maintained, find the temperature distribution of the rod.			004
	A rod of length l has its ends A and B kept at 60°C and 180°C respectively, until steady state conditions prevail. If the	BTL-4	Analyzing	CO4
12.	temperature at B is reduced to 0° C and kept so while that of A is			
	maintained, find the temperature distribution of the rod.			
	A bar 10 cm long with insulated sides has its ends A and B	BTL -3	Applying	CO4
12	maintained at temperature 50°C and 100°C respectively until			
13.	steady state conditions prevail. The temperature at A is suddenly raised to 90° C and at the same time lowered to 60° C at B Find			
	the temperature distributed in the bar at time t.			

14.	Two ends A and B of a rod of length 20cm have the temperatures at 30° C and 80° C respectively until steady state conditions prevail. Then the temperatures at the ends A and B are changed to 40° C and 60° C respectively. Find the temperature distribution of the rod at any time t	BTL-3	Applying	CO4
15.	A bar 20 cm long with insulated sides has its ends A and B maintained at temperature 20° C and 40° C respectively until steady state conditions prevail. The temperature at A is suddenly raised to 50° C and at the same time lowered to 10° C at B. Find the temperature distributed in the bar at time t.	BTL-4	Analyzing	CO4
16.	Two ends A and B of a rod of length 50cm have the temperatures at 0^{0} C and 100^{0} C respectively until steady state conditions prevail. Then the temperatures at the ends A and B are changed to 30^{0} C and 75^{0} C respectively. Find the temperature distribution of the rod at any time t.	BTL -3	Applying	CO4
17.	A bar 50 cm long with insulated sides has its ends A and B maintained at temperature 10° C and 90° C respectively until steady state conditions prevail. The temperature at A is suddenly raised to 30° C and at the same time lowered to 80° C at B. Find the temperature distributed in the bar at time t.	BTL-4	Analyzing	CO4
18.	Two ends A and B of a rod of length 30cm have the temperatures at 25^{0} C and 85^{0} C respectively until steady state conditions prevail. Then the temperatures at the ends A and B are changed to 30^{0} C and 70^{0} C respectively. Find the temperature distribution	BTL -3	Applying	CO4
UNIT-V: APPLICATIONS OF PARTIAL DIFFERENTIAL EQUATIONS - TWO DIMENSIONAL HEAT EQUATIONS Steady state solution of two dimensional equation of heat conduction in infinite plates (excluding insulated edges) - Cartesian plates only				
Q.No.	Question	Bloom's Taxono my Level	Competence	Course Outcome
PART – A				
1.	Write down the governing equation of two-dimensional steady state heat equation.	BTL -1	Remembering	CO5
2.	Write down the three possible solutions of Laplace equation in two dimensions.	BTL -1	Remembering	CO5
3.	Write any two solutions of Laplace equation $u_{xx} + u_{yy} = 0$ involving exponential terms in <i>x</i> or <i>y</i> .	BTL -1	Remembering	CO5
4.	How many boundary conditions are required to solve $u_{xx} + u_{yy} = 0$?	BTL -2	Understanding	CO5
5.	Write the Laplace equation in polar coordinates.	BTL -2	Understanding	CO5
6	Write down the transient state equation of two-dimensional heat	BTL -1	Remembering	CO5

Remembering

Remembering

BTL -1

BTL -1

CO5

CO5

What is the separable solution of Laplace equation in polar coordinates suitable for a circular disc?

6.

7.

8.

equation.

State Fourier law of heat conduction.

9.	Write down the equation of steady state heat conduction in a plate?	BTL -1	Remembering	CO5
10.	What is the general solution for the steady state temperature at an internal point $P(r, \theta)$ of the annuals.	BTL -1	Remembering	CO5
11.	What are the different types of problems that occur in two- dimensional steady state heat equation.	BTL -2	Understanding	CO5
12.	How do you assume the solution of the Laplace equation in polar coordinates, if the solution inside a circular region is required?	BTL -2	Understanding	CO5
13.	Define temperature gradient.	BTL -1	Remembering	CO5
14.	Write the 2D heat equation in cartesian form and also state the	BTL -2	Understanding	CO5
15.	An infinitely long rectangular plate with insulated surface is 10cm wide. The two long edges and one short edge are kept at 0^{0} C, while the other short edge x=0 is kept at temperature $u = \begin{cases} 20y & , & 0 \le y \le 5\\ 20(10-y), & 5 \le y \le 10 \end{cases}$ Write down the boundary and initial conditions?	BTL -2	Understanding	CO5
16.	A square metal plate is bounded by the lines $x=0$, $x=a$, $y=0$, $y=a$. The edges $x=a$, $y=0$, $x=0$ are kept at 0^0 temperatures while the temperature at the edge $y = a is100^0$ temperature. Write down the boundary and initial conditions?	BTL -1	Remembering	CO5
17.	An infinitely long plane uniform plate is bounded by two parallel edges $x=0$ and $x=l$ and an end at right angles to them. The breadth of this edge $y=0$ is l and is maintained at temperature $f(x)$. All the other three edges are at temperature zero. Write down the boundary and initial conditions?	BTL -2	Understanding	CO5
18.	A square plate is bounded by the lines $x = 0, y = 0, x = 20$ y = 20. Its faces are insulated. The temperature along the upper horizontal edge is given by $u(x, 20) = x (20 - x)$ when $0 < x < 20$ while the other three edges are kept at 0^0 C. Write down the boundary and initial conditions?	BTL -2	Understanding	CO5
19.	A rectangular plate with insulated surface is 10 cm wide and so long compared to its width that it may be considered infinite in length without introducing appreciable error. The temperature at short edge y=0 is given by $u = (10x - x^2), 0 < x < 10$ and all the other three edges are kept at 0 ^o C. Write down the boundary and initial conditions?	BTL -2	Understanding	CO5
20.	A long rectangular plate with insulated surface is <i>l</i> cm. If the temperature along one short edge $y=0$ is $u(x,0) = K$ ($l \times -x^2$) degrees, for $0 < x < l$, while the other 2 edges $x=0$ and $x=l$ as well as the other short edge are kept at 0^{0} C. Write down the boundary and initial conditions?	BTL -2	Understanding	CO5
21.	A rectangular plate with insulated surface is 10 cm wide and so long compared to its width that it may be considered infinite in length without introducing appreciable error. The temperature at short edge y=0 is given by $u =\begin{cases} 10x & , & 0 \le x \le 2.5\\ 10(5-x), & 2.5 \le x \le 5 \end{cases}$ and all the other three edges are kept at 0°C. Write down the boundary and initial conditions?	BTL -2	Understanding	CO5

22.	An infinitely long plane uniform plate is bounded by two parallel edges $x=0$ and $x=\pi$ and an end at right angles to them. The breadth of this edge $y=0$ is π and is maintained at temperature u_0 . All the other three edges are at temperature zero. Write down the boundary and initial conditions?	BTL -2	Understanding	CO5
23.	A rectangular plate with insulated surfaces 8cm wide and so long compared to its width that it may be considered infinite in length. If the temperature along one short edge $y = 0$ is given by $u(x, 0) = 100sin \frac{\pi x}{8}, 0 < x < 8$, while the two long edges $x = 0$ and $x = l$, as well as the other short edge are kept at 0 ^o C. Write down the boundary and initial conditions?	BTL -2	Understanding	CO5
24.	A square plate is bounded by the lines $x = 0, y = 0, x = a$, y = a. Its faces are insulated. The temperature along the upper horizontal edge is given by $u(x, a) = bx (a - x)$ when $0 < x < a$ while the other three edges are kept at 0^0 C. Write down the boundary and initial conditions?	BTL -2	Understanding	CO5
25.	A long rectangular plate with insulated surface is <i>l</i> cm. If the temperature along one short edge $y=0$ is $u(x,0) = 3(l \times -x^2)$ degrees, for $0 < x < l$, while the other 2 edges $x=0$ and $x=l$ as well as the other short edge are kept at 0^{0} C. Write down the boundary and initial conditions?	BTL -2	Understanding	CO5
	PART-B (16 Mark Questions)			
1.	A rectangular plate with insulated surface is 10 cm wide and so long compared to its width that it may be considered infinite in length without introducing appreciable error. The temperature at short edge y=0 is given by $u =\begin{cases} 20x & , & 0 \le x \le 5\\ 20(10-x), & 5 \le x \le 10 \end{cases}$ and all the other three edges are kept at 0°C. Find the steady state temperature at any point in the plate	BTL -3	Applying	CO5
2.	An infinitely long rectangular plate with insulated surface is 10cm wide. The two long edges and one short edge are kept at 0° C, while the other short edge x=0 is kept at temperature $u = \begin{cases} 20y , & 0 \le y \le 5\\ 20(10-y), & 5 \le y \le 10 \end{cases}$ Find the steady state temperature distribution in the plate.	BTL -4	Analyzing	CO5
3.	An infinitely long plane uniform plate is bounded by two parallel edges $x=0$ and $x=l$ and an end at right angles to them. The breadth of this edge $y=0$ is l and is maintained at temperature $f(x)$. All the other three edges are at temperature zero. Find the steady state temperature at any interior point of the plate.	BTL -3	Applying	CO5
4.	A long rectangular plate with insulated surface is <i>l</i> cm. If the temperature along one short edge y=0 is $u(x,0) = K$ (<i>l</i> x -x ²) degrees, for $0 < x < l$, while the other 2 edges x=0 and x= <i>l</i> as well as the other short edge are kept at 0^{0} C. Find the steady state temperature function $u(x, y)$.	BTL -3	Applying	CO5
5.	An infinitely long plane uniform plate is bounded by two parallel edges $x=0$ and $x=\pi$ and an end at right angles to them. The breadth of this edge $y=0$ is π and is maintained at temperature	BTL -3	Applying	CO5

	u_0 . All the other three edges are at temperature zero. Find the			
	steady state temperature at any interior point of the plate.	PTI 2	Applying	CO5
6.	compared to its width that it may be considered infinite in length	DIL-3	Apprying	005
	If the temperature along one short edge $v = 0$ is given by			
	$u(x, 0) = 100 \sin \frac{\pi x}{2}$, $0 < x < 8$, while the two long edges $x =$			
	$0 \text{ and } r = 8$ as well as the other short edge are kent at 0^{0} C find			
	the steady state temperature $u(x, y)$ at any point of the plate			
	A rectangular plate with insulated surface is 10 cm wide and so	BTL -4	Analyzing	CO5
	long compared to its width that it may be considered infinite in		g	000
-	length without introducing appreciable error. The temperature at			
7.	short edge y=0 is given by $u = (10x - x^2), 0 < x < 10$ and all			
	the other three edges are kept at 0^{0} C. Find the steady state			
	temperature at any point in the plate.			
	A rectangular plate with insulated surface is b' cm wide and so	BTL -4	Analyzing	CO5
	long compared to its width that it may be considered infinite in			
8.	length without introducing appreciable error. The temperature at the start adapt u_{ij} is given by $u_{ij}(u_{ij}) = \frac{1}{2}u_{ij}$ and all the other three			
	short edge y=0 is given by $u(x, 0) = \lambda x$ and all the other three adges are kept at 0^{0} C that is $u(0, x) = 0$, $u(a, x) = 0$, $u(x, \infty) = 0$			
	0 Find the steady state temperature at any point in the plate			
	A rectangular plate with insulated surfaces 25cm wide and so	BTL -4	Analyzing	CO5
	long compared to its width that it may be considered infinite in		g	000
	length. If the temperature along one short edge $y = 0$ is given by			
9.	$u(x, 0) = 200 \sin \frac{\pi x}{\pi x}, 0 < x < 25$, while the two long edges $x =$			
	0 and $x = l$ as well as the other short edge are kept at 0 ^o C. find			
	the steady state temperature $u(x, y)$ at any point of the plate.			
	A long rectangular plate with insulated surface is <i>l</i> cm. If the	BTL -4	Analyzing	CO5
	temperature along one short edge y=0 is $u(x,0) = 3(l x - x^2)$			
10.	degrees, for $0 < x < l$, while the other 2 edges $x=0$ and $x=l$ as well			
	as the other short edge are kept at 0^{0} C. Find the steady state			
	temperature function $u(x, y)$.			
	A square metal plate is bounded by the lines $x=0$, $x=a$, $y=0$, $y=a$.	BTL -4	Analyzing	CO5
11.	The edges $x=a$, $y=0$, $x=0$ are kept at 0^0 temperatures while the			
	temperature at the edge $y = a is 100^{\circ}$ temperature. Find the steady			
	state temperature distribution at in the plate.	рті 2	Applying	CO5
	A square plate is bounded by the lines $x = 0$, $y = 0$, $x = 20$ y = 20. Its faces are insulated. The temperature along the upper	DIL-3	Apprying	05
12	y = 20. Its faces are insufated. The temperature along the upper horizontal edge is given by $u(r, 20) = r(20 - r)$ when $0 < 100$			
14.	$x < 20$ while the other three edges are kept at 0^0 C Find the			
	steady state temperature in the plate.			
	A square plate is bounded by the lines $x = 0, y = 0, x = a, y = 0$	BTL -4	Analyzing	CO5
13.	a. Its faces are insulated. The temperature along the upper			
	horizontal edge is given by $u(x, a) = bx (a - x)$ when $0 < $			
	$x < a$ while the other three edges are kept at 0^0 C. Find the			
	steady state temperature $u(x, y)$ in the plate at any point.			
14.	Solve $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$, which satisfies the conditions $u(0, y) = 0$	BTL -3	Applying	CO5
	$u(l, y) = u(x, 0) = 0$ and $u(x, a) = \sin \frac{n\pi x}{l}$.			

	A rectangular plate is bounded by the lines $x = 0, y = 0, x =$	BTL -4	Analyzing	CO5
15	b,y = b. Its surfaces are insulated. The temperature at the edges			
	are given by $u(0, y) = 0$ for $0 < y < b$, $u(x, 0) = 0$ for $0 < y < b$			
15.	x < b, $u(b, y) = 0 for 0 < y < b$, $u(x, b) = 0$			
	$50 \sin \frac{\pi x}{b}$ for $0 < x < b$ Find the steady state temperature			
	u(x, y) in the plate at any point.			
	A rectangular plate is bounded by the lines $x = 0, y = 0, x =$	BTL -4	Analyzing	CO5
16.	a,y = b. Its surfaces are insulated. The temperature at the edges			
	are given by $u(0, y) = 0$ for $0 < y < b$, $u(x, b) = 0$ for $0 < y < b$			
	$x < a, u(a, y) = 0$ for $0 < y < b, u(x, 0) = sin^3 \frac{\pi x}{a}$ for $0 < y < b$			
	x < a. Find the steady state temperature $u(x, y)$ in the plate at			
	any point.			
17.	Solve $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$, which satisfies the conditions $u(0, y) =$	BTL -3	Applying	CO5
	$u(10, y) = u(x, \infty) = 0$ and $u(x, 0) = 8sin\frac{\pi x}{10}$.			
18.	A rectangular plate is bounded by the lines $r = 0$ $y = 0$ $r = 1$	BTL -3	Applying	CO5
	a = b Its surfaces are insulated. The temperature at the edges			
	are given by $u(0, v) = 0$ for $0 < v < h$, $u(x, h) = 0$ for $0 < v$			
	x < g $y = 0$ for $0 < y < b$, $u(x, b) = 0$ for $0 < y < b$.			
	$\int_{a}^{x} x \langle u, u(u, y) - 0 \rangle 0 0 \langle y \langle b \rangle, u(x, 0) - 5 s ln \frac{1}{a} +$			
	$3sin\frac{3nx}{a}$ for $0 < x < a$. Find the steady state temperature			
	u(x, y) in the plate at any point.			