SRM VALLIAMMAI ENGINEERING COLLEGE (An Autonomous Institution)

S.R.M. Nagar, Kattankulathur - 603203

DEPARTMENT OF MATHEMATICS

QUESTION BANK

IV SEMESTER

B. E / B.Tech - CSE, IT & Cyber

MA3424- APPLIED MATHEMATICS FOR INFORMATION SCIENCE

Regulation – 2023

Academic Year – 2024 – 2025

Prepared by

Mr.N.Sundarakannan , Assistant Professor / Mathematics Ms.A.Karpagam, Assistant Professor / Mathematics

SRM VALLIAMMAI ENGNIEERING COLLEGE

(An Autonomous Institution) SRM Nagar, Kattankulathur – 603203.

DEPARTMENT OF MATHEMATICS

SUBJECT: MA3424- APPLIED MATHEMATICS FOR INFORMATION SCIENCE

SEM / YEAR: IV / II Year B.E. / B.Tech CSE, IT & Cyber

	UNIT I - GROUPS AND RINGS				
	Algebra: groups, rings, fields, finite fields – Definitions - Ex	kamples - Pr	operties		
Q.No.	Question	BT Level	Competence	CO s	
	PART – A				
1.	Define group with examples.	BTL -1	Remembering	CO 1	
2.	State any two properties of a group.	BTL -1	Remembering	CO 1	
3.	Show that the cancellation laws are true in a group $(G,*)$	BTL -1	Remembering	CO 1	
4.	Prove that identity element in a group is unique.	BTL -2	Understanding	CO 1	
5.	Prove that the inverse of each element of the group $(G,*)$ is unique.	BTL -1	Applying	CO 1	
6	In a group $(G,*)$, prove that $(a * b)^{-1} = b^{-1} * a^{-1}$ for all $a, b \in G$	BTL -2	Applying	CO 1	
7.	If $(G,*)$ is a group infer that the only idempotent element of a is the identity element.	BTL -2	Understanding	CO 1	
8	Let Z be a group of integers with binary operation * defined by $a * b = a + b - 2$ for all $a, b \in Z$. Find the identity element of the group $\langle Z, * \rangle$.	BTL -2	Understanding	CO 1	
9.	Let R be the set of non-zero real numbers and * is the binary operation defined as $a * b = \frac{ab}{2}$, for $a, b \in R$. Find the inverse of any element.	BTL -2	Applying	CO 1	
10.	Define Semi group.			CO 1	
11.	Define Monoid.	BTL -2	Understanding	CO 1	
12.	Prove that if <i>G</i> is abelian group, then for all $a, b \in G$, $(a * b)^2 = a^2 * b^2$	BTL -1	Analyzing	CO 1	
13.	If (<i>G</i> ,*) is a group for any $a \in G$ prove that $(a^{-1})^{-1} = a$.	BTL -1	Applying	CO 1	

14.	Prove that the order of an element a of a group G is the	BTL -1	Analyzing	CO 1
	same as that of its inverse (a^{-1}) .		8	<u> </u>
15.	Let R be the set of non-zero real numbers and * is the binary operation defined as $a * b = \frac{ab}{2}$, for $a, b \in R$. Find the identity element.	BTL -2	Understanding	
16.	Let Z be a group of integers with binary operation * defined by $a * b = a + b - 1$ for all $a, b \in Z$. Find the identity of the element of the group $\langle Z, * \rangle$.	BTL -1	Analyzing	CO 1
17.	Let Z be a group of integers with binary operation * defined by $a * b = a + b - 2$ for all $a, b \in Z$. Find the inverse of the element of the group $\langle Z, * \rangle$.	BTL -1	Remembering	CO 1
18.	Let R be the set of non-zero real numbers and * is the binary operation defined as $a * b = \frac{ab}{3}$, for $a, b \in R$. Find the identity element.	BTL -2	Analyzing	CO 1
19.	If G is a group of order n and $a \in G$, prove that $a^n = e$	BTL -2	Understanding	CO 1
20.	Give an example of a ring which is not a field.	BTL -1	Analyzing	CO 1
21.	Discuss a ring and give an example	BTL -1	Applying	CO 1
22.	Define commutative ring and Ring with unity	BTL -2	Understanding	CO 1
23.	Discuss a sub ring with example	BTL -1	Analyzing	CO 1
24.	Define integral domain and give an example.	BTL -1	Remembering	CO 1
25.	Define a field with example	BTL -1	Remembering	CO 1
	PART – B			
1.	Prove that $G = \begin{cases} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \end{cases}$ forms an abelian group under matrix multiplication.	BTL -3	Applying	CO 1
2.(a)	Prove that in a group G the equations a * x = b and $y * a = b$ have unique solutions for the unknowns x and y as $x = a^{-1} * b$, $y = b * a^{-1}$ when $a, b \in G$.	BTL -4	Understanding	CO 1
2.(b)	Show that the set of all matrices $\begin{bmatrix} a & b \\ -b & a \end{bmatrix}$ forms an abelian group with respect to matrix multiplication.	BTL -4	Evaluating	CO 1
3.	Apply the definition of a group to Prove that $(G,*)$ is a non-abelian group where $G = R \times R$ and the binary operation * is defined as $(a, b) * (c, d) = (ac, bc + d)$	BTL -3	Applying	CO 1

	If $(G,*)$ is an abelian group and if $\forall a, b \in G$. Show that			CO 1
4. (a)	$(a * b)^n = a^n * b^n$, for every integer <i>n</i> .	BTL -3	Applying	
4.(b)	Show that $(Q^+, *)$ is an abelian group where $*$ is defined as $a * b = ab/2, \forall a, b \in Q^+$	BTL -3	Applying	CO 1
5.	Determine whether (Q, \oplus, \odot) is a ring with the binary operations $x \oplus y = x + y + 7$, $x \odot y = x + y + \frac{xy}{7}$ for all $x, y \in Q$	BTL -3	Applying	CO 1
6.(a)	Prove that the intersection of two subgroups of a group G is again a subgroup of G	BTL -3	Applying	CO 1
6.(b)	Prove that the set $\{1, -1, i, -i\}$ is a finite abelian group with respect to the multiplication of complex numbers.	BTL -3	Applying	CO 1
7.	If (G, *) is a finite cyclic group generated by an element $a \in G$ and is of order n then $a^n = e$ so that $G = \{a, a^2, \dots a^n (= e)\}$. Also, n is the least positive integer for which $a^n = e$.	BTL -4	Remembering	CO 1
8. (a)	Show that (Z_{7}, \cdot_{7}) is a abelian group.	BTL -4	Analyzing	CO 1
8.(b)	Prove that $G = \left\{ \begin{bmatrix} a & b \\ 0 & d \end{bmatrix}$, $ad \neq 0$ $a, b, d \in R \right\}$ is a group under matrix multiplication.	BTL -3	Applying	CO 1
9.	Prove that $(S_3,*)$, where $S = (1,2,3)$ is a group under the operation of right composition. Is it abelian?	BTL -4	Evaluating	CO 1
10.(a)	Let <i>G</i> be a group and $a \in G$. Let $f: G \to G$ be given by $f(x) = axa^{-1}, \forall x \in G$. Prove that <i>f</i> is an isomorphism of <i>G</i> onto <i>G</i>	BTL -4	Creating	CO 1
10.(b)	Prove that $G = \left\{ \begin{bmatrix} a & a \\ a & a \end{bmatrix} \right\}$, $a \neq 0$ $a \in R \right\}$ is a group under matrix multiplication.	BTL -3	Applying	CO 1
11.	Analyze that Z_n is a field if and only if n is prime	BTL -4	Analyzing	CO 1
12.(a)	Let $f: G, *$ $\rightarrow (H, \Delta)$ be group homomorphism then show that $Ker(f)$ is a normal subgroup.	BTL -3	Applying	CO 1
12.(b)	Show that M_2 , the set of all 2X2 nonsingular matrices over R is a group under usual matrix multiplication. Is it abelian?	BTL -3	Applying	CO 1
13.	Prove that in a Ring (R,+,.) The zero element is unique The additive inverse of each ring element is unique If R has a unity then it is unique If R has a unity, x is a unit of R then the multiplicative inverse of x is unique	BTL -4	Analyzing	CO 1
14.	Show that $(Z_6, +_6, \cdot_6)$ is a ring.	BTL -3	Applying	CO 1

15.	Prove that every field is an integral domain and every finite integral domain is a field. Give an example for an integral domain which is nor a field	BTL -4	Analyzing	CO 1
16.	Show that $(Z_{5,}+_{5},\cdot_{5})$ is a field	BTL -3	Applying	CO 1
17.	Analyze whether (Z, \oplus, \odot) is a ring with the binary operation $x \oplus y = x + y - 1, x \odot y = x + y - xy$ for all $x, y \in Z$	BTL -4	Analyzing	CO 1
18.	Prove that the set $Z_4 = \{0,1,2,3\}$ is a commutative ring with respct of the binary operation $+_4$ and \times_4	BTL -3	Applying	CO 1

	UNIT II - FINITE FIELDS AND POLYNOMIALS				
	Rings – Polynomial rings – Irreducible polynomials over finit	te fields – F	actorization of poly	ynomials	
	over finite fields.				
Q.No.	Question	BT	Competence	COs	
		Level			
	PART – A		I		
1.	Define polynomial.	BTL -1	Remembering	CO 2	
2.	Define root of a polynomial.	BTL -1	Remembering	CO 2	
3.	Find the roots for the function $f(x) = x^2 + 3x + 2 \in \mathbb{Z}_6[x]$.	BTL -1	Remembering	CO 2	
4.	What are the roots of $f(x) = x^2 - 6x + 9 \in \mathbb{R}[x]$.	BTL -2	Understanding	CO 2	
5.	Find the roots for the function $f(x) = x^2 - 2 in R[x] and Q[x]$.	BTL -1	Applying	CO 2	
6	How many polynomials in \mathbb{Z}_5 has degree 3?	BTL -1	Applying	CO 2	
7.	How many polynomials in \mathbb{Z}_7 has degree 5?	BTL -2	Understanding	CO 2	
8	If $f(x) = 7x^4 + 4x^3 + 3x^2 + x + 4 \& g(x) = 3x^3 + 5x^2 + 6x + 1$, $f(x), g(x) \in Z_7[x]$, then find $f(x) + g(x) \& \deg(f(x) + g(x))$.	BTL -2	Understanding	CO 2	
9.	Determine all polynomials of degree 2 in $\mathbb{Z}_2[x]$.	BTL -1	Applying	CO 2	
10	Define irreducible polynomial.	BTL -2	Understanding	CO 2	
11.	Determine whether $x^2 + 1$ is an irreducible polynomial over the field $\{0,1\}$.	BTL -1	Analyzing	CO 2	
12.	Show that $x^2 + x + 1$ is irreducible over Z_5 .	BTL -1	Applying	CO 2	
13.	Show that $x^2 + 1$ is irreducible in $\mathbb{Z}_3[x]$.	BTL -1	Analyzing	CO 2	
14.	Obtain reducible polynomial of degree six with no roots in \mathbb{Z}_2 .	BTL -2	Understanding	CO 2	

15.	Does the set $F = \{0,1,2,3\}$ form a filed with respect to addition modulo 4 and multiplication modulo 4? Why?	BTL -2	Analyzing	CO 2
16.	If $f(x) = x^5 - 2x^2 + 5x - 3$ and $g(x) = x^4 - 5x^3 + 7x$ are polynomials in Q[x], determine $q(x)$ and $r(x)$ such that $f(x) = q(x)g(x) + r(x)$	BTL -1	Remembering	CO 2
17.	Find quotient and reminder when $g(x) = 2x-1$ divides $f(x) = 2x^4 + 5x^3 - 7x^2 + 4x + 8$, where $f(x)$ and $g(x)$ are polynomials over Q[x]	BTL -2	Analyzing	CO 2
18.	What is the remainder when $f(x) = x^7 - 6x^5 + 4x^4 - x^2 + 3x - 7 \in \mathbb{Q}[x]$ is divided by $x - 2$.	BTL -2	Understanding	CO 2
19.	State division algorithm for polynomials.	BTL -1	Analyzing	CO 2
20.	State Remainder theorem.	BTL -1	Applying	CO 2
21.	Define characteristics of a field.	BTL -2	Understanding	CO 2
22.	State Euclidean algorithm.	BTL -2	Analyzing	CO 2
23.	Find two non-zero polynomials $f(x)$ and $g(x)$ in $Z_6[x]$ such that $f(x)g(x) = 0$	BTL -1	Applying	CO 2
24.	Check the reducibility of $f(x) = x^2 + 3x - 1$ in Q[x], R[x] and C[x]	BTL -2	Understanding	CO 2
25.	Check the reducibility of $f(x) = x^3 - 1$ in Q[x], R[x] and C[x]	BTL -2	Analyzing	CO 2
	PART – B			·
1.	 Let R[x] be a polynomial ring, then Prove the following (a) If R is commutative then R[x] is commutative. (b) If R is a ring with unity then R[x] is a ring with unity. (c) R[x] is an integral domain if and only if R is an integral domain. 	BTL -3	Applying	CO 2
2. (a)	Find $f(x) + g(x)$, $f(x) - g(x)$ and $f(x) g(x)$ such that $f(x) = x^4 + x^3 + x + 1$, $g(x) = x^3 + x^2 + x + 1$ over $\mathbb{Z}_2[x]$	BTL -4	Evaluating	CO 2
2.(b)	Find all the roots of $f(x) = x^5 - x$ in $\mathbb{Z}_5[x]$ and then write $f(x)$ as a product of first degree polynomials	BTL -3	Evaluating	CO 2
3.	If \mathbb{R} is a ring then prove that $(\mathbb{R}[x], +, .)$ is a ring called a polynomial ring over \mathbb{R} .	BTL -3	Applying	CO 2
4.(a)	Let $(\mathbb{R}, +, .)$ be a commutative ring with unity u. Then \mathbb{R} is an integral domain if and only if for all $f(x), g(x) \in \mathbb{R}[x]$, if neither $f(x)$ nor $g(x)$ is the zero polynomial, then prove that degree of $f(x)g(x) = degreef(x) + degreeg(x)$.	BTL -3	Applying	CO 2
4. (b)	Find the remainder when $g(x) = 7x^3 - 2x^2 + 5x - 2$ is divided by $f(x) = x - 3$ and $f(x), g(x) \in \mathbb{Z}[x]$	BTL -3	Applying	CO 2

5.	State and Prove (i) Remainder Theorem (ii) Factor theorem	BTL -3	Applying	CO 2
6.(a)	Find all roots of $f(x) = x^2 + 4x$ if $f(x) \in Z_{12}$.	BTL -3	Applying	CO 2
6.(b)	If $g(x) = x^5 - 2x^2 + 5x - 3 \& f(x) = x^4 - 5x^3 + 7x$ Find $g(x)$, $r(x)$ such that $g(x) = f(x)g(x) + r(x)$.	BTL -3	Applying	CO 2
7.	(i) Check whether Check whether $f(x) = x^4 + x^3 + x^2 + x + 1 \in Z_2[x]$ is irreducible or not? (ii) Discuss whether $x^4 + x^3 + 1$ is reducible over Z_2 .	BTL -3	Remembering	CO 2
8. (a)	If F is a field and $f(x) \in F[x]$ has degree ≥ 1 , then prove that $f(x)$ has at most n roots in F.	BTL -4	Analyzing	CO 2
8.(b)	If $(x) = 3x^5 - 8x^4 + x^3 - x^2 + 4x - 7$, $g(x) = x + 9$ and $f(x), g(x) \in \mathbb{Z}_{11}[x]$, find the remainder when $f(x)$ is divided by $g(x)$.	BTL -3	Applying	CO 2
9.	(i) Find all the roots of $f(x) = x^3 + 5x^2 + 2x + 6$ in $Z_7[x]$ And then write $f(x)$ as a product of first degree polynomials (ii)Determine whether the given polynomial is irreducible or not? $f(x) = x^2 + x + 1$ over Z_3, Z_5, Z_7 (iii) Find four distinct linear polynomials $g(x)$, $h(x)$, $s(x)$, $t(x) \in Z_{12}[x]$ so that $f(x) = g(x)h(x) = s(x)t(x)$.	BTL -3	Evaluating	CO 2
10.(a)	Give an example of polynomial $f(x) \in F(x)$, where $f(x)$ Has degree 8 and degree 6, it is reducible but it has no real roots.	BTL -4	Creating	CO 2
10.(b)	Discuss whether $x^4 - 2$ is reducible over \mathbb{Q} , \mathbb{R} , \mathbb{C} .	BTL -3	Applying	CO 2
11.	Let $(F, +, .)$ be a field. If Char $(F) > 0$, then prove that Char (F) must be Prime.	BTL -4	Analyzing	CO 2
12.(a)	Check whether $f(x) = x^4 + x^3 + x^2 + x + 1 \in \mathbb{Z}_2[x]$ is irreducible or not?	BTL -3	Applying	CO 2
12.(b)	Find the gcd of $2x^3 + 2x^2 - x - 1$ and $2x^4 - x^2$ in $\mathbb{Q}[x]$	BTL -3	Applying	CO 2
13.	Identify the equivalence classes of $Z_2[x]$ with $S(x) = x^2 + x + 1$	BTL -4	Analyzing	CO 2
14.(a)	Write $f(x) = (2x^2 + 1)(5x^3 - 5x + 3)(4x - 3) \in \mathbb{Z}_7[x]$ as a product of the unit and three Monic polynomial.	BTL -3	Applying	CO 2
14.(b)	Determine whether the following polynomial is irreducible or not? $f(x) = x^2 + 3x - 1$ in $\mathbb{R}[x]$, $\mathbb{Q}[x]$, $\mathbb{C}[x]$.	BTL -3	Applying	CO 2
15.	Determine whether the given polynomial is irreducible or not? $f(x) = x^2 + x + 1$ over Z_3, Z_5, Z_7	BTL -4	Analyzing	CO 2
16.(a)	If $f(x) = 4x^2 + 1$, $g(x) = 2x + 3$, $f(x)$, $g(x) \in Z_8[x]$. Then show that deg $f(x)g(x) = degf(x) + degg(x)$.	BTL -4	Analyzing	CO 2

17.	Analyze the GCD of (i) $4x^3 - 2x^2 - 3x + 1$ and $2x^2 - x - 2$ in Q[x] (ii) $x^5 + x^4 + 2x^2 - x - 1$ and $x^3 + x^2 - x$	BTL -4	Analyzing	CO 2
	in Q[x]			
	Find the remainder when $g(x) = 6x^4 + 4x^3 + 5x^2 + 3x + 3x^4$			CO 2
18. (a)	1 is divided by $f(x) = 3x^2 + 4x + 2$ over polynomials in	BTL -3	Applying	
	$\mathbb{Z}_7[x]$			
18 (b)	Find the g.c.d of $x^4 + x^3 + 2x^2 + x + 1$ and $x^3 - 1$ over	DTI 2	Applying	CO 2
18.(b)	Q.	DIL-3	Apprying	

UNIT III - ANALYTIC NUMBER THEORY

Division algorithm –Prime and composite numbers– GCD – Euclidean algorithm – Fundamental theorem of arithmetic – LCM

Q.No.	Question	BT Level	Competence	CO s
	PART – A			
1.	State divisible algorithm	BTL -1	Remembering	CO 3
2.	State pigeon hole principle	BTL -1	Remembering	CO 3
3.	State principle of inclusion and exclusion	BTL -1	Remembering	CO 3
4.	Find the number of positive integers ≤ 2076 that are divisible by 19	BTL -2	Understanding	CO 3
5.	Find the number of positive integers \leq 3076 that are not divisible by 17	BTL -2	Applying	CO 3
6	Find the number of positive integers \leq 3076 that are divisible by 19	BTL -2	Applying	CO 3
7.	Prove that if n is odd then $n^2 - 1$ is divisible by 8	BTL -2	Understanding	CO 3
8	Define union, intersection and complement.	BTL -2	Understanding	CO 3
9.	Give the divisibility relation.	BTL -1	Applying	CO 3
10	Let f(n) denote the number of positive factors of a positive integer n. Evaluate f(12).	BTL -2	Understanding	CO 3
11.	Find the six consecutive integers that are composite	BTL -1	Analyzing	CO 3
12.	Express (12,15,21) as a linear combination of 12,15,and 21	BTL -1	Applying	CO 3
13.	Prove that the product of any two integers of the form 4n+1 is also the same form	BTL -2	Analyzing	CO 3
14.	Use canonical decomposition to Evaluate the GCD of 168 and 180	BTL -2	Understanding	CO 3
15.	Use canonical decomposition to evaluate LCM of 1050 and 2574	BTL -1	Analyzing	CO 3
16.	Find the canonical decomposition of 2520	BTL -1	Remembering	CO 3
17.	Find the prime factorization of 420, 135, 1925	BTL -2	Analyzing	CO 3
18.	Using (252,360) construct [252,360]	BTL -2	Understanding	CO 3
19.	Find the twin primes p, q such that $[p, q] = 323$	BTL -1	Analyzing	CO 3
20.	Using recursion evaluate (18,30,60,75,132)	BTL -1	Applying	CO 3

21.	Find the GCD (414,662) using Euclidean algorithm	BTL -2	Understanding	CO 3
22.	Find the LCM (120.500)	BTL -2	Analyzing	CO 3
23.	Find the canonical decomposition of 1976	BTL -1	Applying	CO 3
24.	Use canonical decomposition to Evaluate the GCD of 72 and 108	BTL -2	Understanding	CO 3
25.	Use canonical decomposition to Evaluate the LCM of 110 and 210	BTL -1	Analyzing	CO 3
	PART – B			
	If $a, b, c \in Z$ then (i) a/a , for all $a \neq 0 \in Z$			CO 3
	(ii) a/b and b/c then a/c , $\forall a, b \neq 0, c \neq 0 \in Z$			
1.	(iii) a/b then a/bc , $\forall a \neq 0, b \in Z$	BTL -3	Applying	
	(iv) a/b and a/c then $a/(xb + yc)$, $\forall x, y \in Z, a \neq 0$ $\in Z$			
2.(a)	State and Prove Euclidean algorithm	BTL -4	Evaluating	CO 3
2.(b)	Find the number of positive integers ≤ 3000 divisible by 3, 5 or 7	BTL -4	Evaluating	CO 3
	Prove that (i) If p is a prime and p/ab then p/a or p/b			CO 3
3	(ii) If p is a prime and $p/a_1a_2a_3\cdots a_n$, where	DTI 2	Applying	
5.	$a_{1,}a_{2,}a_{3,}\cdots$, a_{n} are positive integers then p/a_{i} for some i,	DIL-3	Apprying	
	$1 \le i \le n$			
4 (a)	Prove that the GCD of two positive integers a and b is a	BTI -3	Applying	CO 3
 (<i>a</i>)	linear combination of a and b	DIL 5	rippiying	
4.(b)	Find the number of positive integers in the range 1976	BTL-3	Applying	CO 3
	through 3776 that are divisible by 13 and not divisible by 17		·	
5.	Prove that (i) every integer $n \ge 2$ has a prime factor.	BTL -3	Applying	CO 3
	(ii) there are infinitely many primes.	-	11 5 6	
6.(a)	Find the number of integers from 1 to 250 that are divisible by any of the integers 2,3,5,7	BTL -3	Applying	CO 3
6.(b)	Prove that $(a, a - b) = 1$ if and only if $(a, b) = 1$	BTL -3	Applying	CO 3
7.	State and prove Fundamental Theorem of Arithmetic.	BTL -3	Remembering	CO 3
	Prove the following			CO 3
8.(a)	If (i) $(a,m) = 1$ and $(a,m) = 1$, then $(ab,m) = 1$ (ii)If a/c and b/c and $(a,b) = 1$, then ab/c	BTL -4	Analyzing	
	Use Euclidean algorithm to find the GCD of (1819, 3587).			CO 3
8.(b)	Also express the GCD as a linear combination of the given	BTL -3	Applying	
	numbers			
9.	State and Prove Euclid theorem	BTL -4	Evaluating	CO 3
10.(a)	Prove that there are infinitely many primes of the form $4n + 3$	BTL -4	Creating	CO 3

	Use Euclidean algorithm to find the GCD of			CO 3
10.(b)	(12345,54321). Also express the GCD as a linear	BTL -3	Applying	
	combination of the given numbers			
	If a and b are positive integers then prove that (i) $[a, b] =$			CO 3
11.	a.b			
	$\overline{(a,b)}$	BTL -4	Analyzing	
	(ii) Prove that two positive integers a and b are relatively			
	prime iff $[a, b] = ab$			
10 ()	Prove that every composite number n has prime factor \leq		A 1 '	CO 3
12.(a)	$\left[\sqrt{n}\right]$	BIL-3	Applying	
	Use Euclidean algorithm to find the GCD of (2076, 1776).			CO 3
12.(b)	Also express the GCD as a linear combination of the given	BTL -3	Applying	
12.(0)	numbers		11 5 8	
	Use Euclidean algorithm to evaluate the GCD of (2024,			CO 3
13.	1024). Also express the GCD as a linear combination of the	BTL -4	Analyzing	
	given numbers			
	Prove that for every positive integer <i>n</i> there are <i>n</i>			CO 3
14.(a)	consecutive integers that are composite numbers	BTL-3	Applying	
14.(b)	Use Euclidean algorithm to find the GCD of (4076, 1024).			CO 3
	Also express the GCD as a linear combination of the given	BTL -3	Applying	
	numbers			
	(i) If $d = (a, b)$ and d' is any common divisor of a and b then			CO 3
	d'/d			
15	(ii) For any positive integer m prove that $(ma, mb) =$	BTL-4	Analyzing	
10.	m(a,b)	DIL	T mary zing	
	(iii) If $d = (a, b)$, then $\left(\frac{a}{b}, \frac{b}{b}\right) = 1$			
				CO 3
16.(a)	Construct the canonical decomposition of 23!	BTL -4	Analyzing	05
	Use Euclidean algorithm to find the GCD of (3076, 1976).			CO 3
16.(b)	Also express the GCD as a linear combination of the given	BTL -3	Applying	
	numbers			
1.	If $d = (a, b)$ then $(i)(a, a - b) = d$ (ii)For any integer x			CO 3
17.	then $(a, b) = (a, b + ax)$	BTL-4	Analyzing	
18.(a)	Find [24.28.36.40]	BTL -3	Applying	CO 3
(u)	Use Evalideen electrithm to find the CCD of 19992		Applying	CO^2
10 (1)	Use Euclidean algorithm to find the GCD of 42823 , 6400 Algo express the CCD as a linear combination of the		Apprying	
18.(b)	0409. Also express the GCD as a linear combination of the	BIL-3		
	given numbers			

	UNIT IV - DIOPHANTINE EQUATIONS AND CONGRUENCES			
	Linear Diophantine equations - Congruence's - Linear Cong	gruence's –	Modular exponer	tiation-
	Chinese remainder theorem.			
Q.No.	Question	BT Level	Competence	CO s
	PART – A		I	
1.	Define linear Diophantine Equation in two variables.	BTL -1	Remembering	CO 4
2.	Discuss whether $6x + 8y = 25$ is solvable.	BTL -1	Remembering	CO 4
3.	Discuss whether 12x+18y=30 is solvable.	BTL -1	Remembering	CO 4
4.	Is 6x+12y+15z=10 solvable?	BTL -2	Understanding	CO 4
5.	Is 5x+11y+9z=6 solvable?	BTL -2	Applying	CO 4
6	Prove that $a \equiv b \pmod{m}$ if and only if $a = b + km$ for some integer k.	BTL -1	Applying	CO 4
7.	Find the least residue of 23 modulo 5, -3 modulo 5.	BTL -2	Understanding	CO 4
8	Define complete sets of residues modulo m.	BTL -2	Understanding	CO 4
9.	Find the Congruence classes modulo 5.	BTL -1	Applying	CO 4
10	Find the Congruence classes modulo 7.	BTL -2	Understanding	CO 4
11.	State Chinese Remainder Theorem.	BTL -2	Analyzing	CO 4
12.	Define Congruence and incongruence solution.	BTL -1	Applying	CO 4
13.	If $a \equiv b \pmod{m}$, then prove that $a^n \equiv b^n \pmod{m}$ for any positive integer <i>n</i> .	BTL -1	Analyzing	CO 4
14.	If $ac \equiv bc \pmod{m}$ and $(c, m) = 1$, then $a \equiv b \pmod{m}$.	BTL -2	Understanding	CO 4
15.	If $ac \equiv bc \pmod{m}$ and $(c, m) = d$, then $a \equiv b \pmod{\frac{m}{d}}$.	BTL -2	Analyzing	CO 4
16.	Determine whether the congruence $8x \equiv 10 \pmod{6}$ is solvable.	BTL -1	Remembering	CO 4
17.	Determine whether the congruence $2x \equiv 3 \pmod{4}$ is solvable.	BTL -1	Analyzing	CO 4
18.	Determine whether the congruence $4x \equiv 7 \pmod{5}$ is solvable.	BTL -2	Understanding	CO 4
19.	Determine whether the congruence $8x \equiv 10 \pmod{6}$ is solvable.	BTL -2	Analyzing	CO 4
20.	Determine whether the congruence $5x \equiv 2 \pmod{3}$ is solvable.	BTL -1	Applying	CO 4
21.	Using Chinese Remainder theorem, determine whether the linear system is solvable $x \equiv 7 \pmod{9}$, $x \equiv 11 \pmod{12}$.	BTL -2	Understanding	CO 4

22.	Using Chinese Remainder theorem, determine whether the linear system is solvable $x \equiv 3 \pmod{6}$, $x \equiv 5 \pmod{8}$.	BTL -1	Analyzing	CO 4
23.	Using Chinese Remainder theorem, determine whether the linear system is solvable $x \equiv 2 \pmod{10}$, $x \equiv 7 \pmod{15}$.	BTL -2	Applying	CO 4
24.	Using Chinese Remainder theorem, determine whether the linear system is solvable $x \equiv 5 \pmod{7}$, $x \equiv 8 \pmod{8}$	BTL -2	Understanding	CO 4
25.	Using Chinese Remainder theorem, determine whether the linear system is solvable $x \equiv 9 \pmod{10}$, $x \equiv 10 \pmod{14}$.	BTL -1	Analyzing	CO 4
	PART B			
1.	Prove that the linear Diophantine equation $ax + by = c$ is solvable if and only if d/c , where $d = (a, b)$. If x_0 and y_0 is a particular solution of the linear Diophantine equation, then all its solutions are given by $x = x_0 + \frac{dt}{d}$, $y = y_0 - \frac{at}{d}$ where t is an arbitrary integer	BTL -3	Applying	CO 4
2.	Solve the linear Diophantine equation $28x + 91y = 119$	BTL -4	Evaluating	CO 4
3.	Solve $1776x + 1976y = 4152$	BTL -3	Applying	CO 4
4.	Solve $93x - 81y = 3$	BTL -3	Applying	CO 4
5.	Find the general solution of the linear Diophantine equation 6x + 8y + 12z = 10	BTL -3	Applying	CO 4
6.	Solve linear Diophantine equation is solvable (i) $1776x + 1976v = 4152$	BTL -3	Applying	CO 4
7.	Solve linear Diophantine equation is solvable 1076x + 2076y = 1155	BTL -1	Remembering	CO 4
8.	 Prove that (i) a ≡ b(modm) if and only if a = b + km for some integer k. (ii) Prove that the relation ' ≡ ' (congruence) is an equivalence relation. 	BTL -3	Applying	CO 4
9.	23 weary travelers entered the outskirts of a lush and beautiful forest. They found 63 equal heaps of plantains put together and seven single fruits are divided then equally. Find the number of fruits in each heap	BTL -4	Evaluating	CO 4
10.	A fruit basket contains apples and oranges. Each apple cost 65 Rs. Each orange cost 45Rs. For a total of 810 Rs. Find the minimum possible numbers of apple in the basket.	BTL -4	Creating	CO 4
11.	Prove that, let $a \equiv b \pmod{and c} \equiv d \pmod{a}$ then (<i>i</i>) $a + c \equiv b + d \pmod{a}$ (<i>ii</i>) $ac \equiv bd \pmod{a}$ (<i>iii</i>) $a^n \equiv b^n \pmod{a}$ for any positive integer n	BTL -4	Analyzing	CO 4
12.	Find the incongruent solutions of $28x \equiv 119 \pmod{91}$	BTL-3	Applying	CO 4
13.	State and prove Chinese remainder theorem.	BTL -4	Analyzing	CO 4
14.(a)	Verify that whether the number of prime of the form $4n + 3$ be expressed as the sum of two squares	BTL -3	Applying	CO 4

14.(b)	If a cock is worth five coins, a hen three coins and three chicks together one coin, how many cocks, hens and chicks, totally 100 can be bought for 100 coins	BTL -3	Applying	CO 4
15.	Find the incongruent solutions of $27x \equiv 117 \pmod{89}$.	BTL -4	Analyzing	CO 4
16.(a)	A child has some marbles in a box. If the marbles are grouped in sevens, there will be five left over; If they are grouped in elevens, there will be six left over; If they are grouped in thirteen , eight will be left over; Determine the latest number of marbles in the box	BTL -4	Analyzing	CO 4
16.(b)	Solve $12x + 16y = 18$.	BTL -3	Applying	CO 4
17.	If <i>n</i> is any integer then show that (<i>i</i>) $n^2 + n \equiv 0 \pmod{2}$ (<i>ii</i>) $n^4 + 2n^3 + n^2 \equiv 0 \pmod{4}$ (<i>iii</i>) $2n^3 + 3n^2 + n \equiv 0 \pmod{6}$	BTL -4	Analyzing	CO 4
18. (a)	Verify that whether the number of integer of the form $8n + 7$ be expressed as the sum of three squares.	BTL -3	Applying	CO 4
18.(b)	Solve $71x - 50y = 1$.	BTL -3	Applying	CO 4

UNIT V - CLASSICAL THEOREMS AND MULTIPLICATIVE FUNCTIONSWilson's theorem – Fermat's little theorem – Euler's theorem – statements – examples - Euler's Phifunctions – Tau and Sigma functions.

Q.No.	Question	BT Level	Competence	CO s
	PART – A		·	
1.	State Wilsons Theorem	BTL -1	Remembering	CO 5
2.	State Fermat's Theorem	BTL -1	Remembering	CO 5
3.	State Euler's Theorem	BTL -1	Remembering	CO 5
4.	Define Euler Phi Function	BTL -2	Understanding	CO 5
5.	Define Tau Function	BTL -1	Applying	CO 5
6	Define Sigma Function	BTL -1	Applying	CO 5
7.	Show that 11 is self invertible.	BTL -2	Understanding	CO 5
8	Evaluate $\frac{(np)!}{n! p^n}$ if n=46, p=5	BTL -2	Understanding	CO 5
9.	How many primes are there of the form $m! + 1$ when $m \le 100$?	BTL -1	Applying	CO 5

10	Find the self-invertible least residue modulo each prime 7		I Indonaton din o	CO 5
10	and 19	BIL-2	Understanding	
11.	Solve $x^2 \equiv 1 \mod(6)$	BTL -2	Analyzing	CO 5
12.	Find the least residues of 1,2,, $p - 1 \mod 0$ 7	BTL -1	Applying	CO 5
13.	Find $\emptyset(11)$.	BTL -1	Analyzing	CO 5
14.	Evaluate the inverse of 12 modulo 7	BTL -2	Understanding	CO 5
15.	Solve the linear congruence of $12x \equiv 6 \pmod{7}$	BTL -2	Analyzing	CO 5
16.	Solve the linear congruence of $24x \equiv 11 \pmod{17}$	BTL -1	Remembering	CO 5
17.	Find $\phi(18)$.	BTL -1	Analyzing	CO 5
18.	Solve the linear congruence of $35x \equiv 47 \pmod{24}$	BTL -2	Understanding	CO 5
19.	Define Multiplication Theorem.	BTL -2	Analyzing	CO 5
20.	Compute Ø (7919)	BTL -1	Applying	CO 5
21.	Compute Ø (15,625)	BTL -2	Understanding	CO 5
22.	Find the twin primes p and q if $\phi(pq) = 288$	BTL -2	Analyzing	CO 5
23.	Compute Ø(47).	BTL -2	Applying	CO 5
24.	Compute $\sigma(97)$.	BTL -2	Understanding	CO 5
25.	Compute $\sigma(97)$.	BTL -1	Remembering	CO 5
	PART – B			
1.	Apply Wilson's theorem to find the reminder of (i) 51! When divided by 91 (ii) 67! When divided by 71.	BTL -3	Applying	CO 5
2.(a)	Find the reminder of 13! When divided by 19	BTL -4	Evaluating	CO 5
2.(b)	Find the remainder when 7 ¹⁰⁰¹ is divided by 17	BTL -4	Evaluating	CO 5
3.	Verify $(p - 1)! \equiv -1 (modp)$, when p=13 (i)Without using Wilson's theorem (ii)Using Wilson's theorem	BTL -3	Applying	CO 5
4. (a)	Find the reminder of 17! When divided by 23	BTL -3	Applying	CO 5
4.(b)	Find the remainder when 24^{1947} is divided by 17	BTL -3	Applying	CO 5
5.	Find $\emptyset(1976)$ and σ (496)	BTL -3	Applying	CO 5

6.(a)	If n is a positive integer such that $(n - 1)! \equiv -1 \pmod{p}$	BTL -3	Applying	CO 5
6.(b)	Find the remainder when 15 ¹⁹⁷⁶ is divided by 23	BTL -3	Applying	CO 5
7.	Create the reminder of (i) 55^{1876} when divided by 12 (ii) 25^{2550} when divided by 18	BTL -1	Remembering	CO 5
8.(a)	Evaluate the linear congruence equations $12x \equiv 6 \pmod{7}$ using Fermat's little theorem	BTL -4	Analyzing	CO 5
8.(b)	Find the remainder when 31^{1706} is divided by 23	BTL -3	Applying	CO 5
9.(a)	Evaluate the linear congruence equations $8x \equiv 3 \pmod{11}$ using Fermat's little theorem.	BTL -4	Evaluating	CO 5
9.(b)	Compute (i) $\emptyset(7919), \emptyset(666)$ using Euler phi function	BTL -4	Evaluating	CO 5
10.(a)	Solve the linear congruence $5x \equiv 3 \pmod{24}$	BTL -4	Creating	CO 5
10.(b)	Compute $\tau(6491), \tau(2187), \tau(44982)$ using Euler phi function	BTL -3	Applying	CO 5
11.	Evaluate τ (<i>n</i>)and σ (<i>n</i>) for each n = 43, 1560, 44982	BTL -4	Analyzing	CO 5
12.	Find the remainder when 245^{1040} is divided by 18 and find the remainder when 7^{1020} is divided by 15.	BTL -3	Creating	CO 5
13.(a)	Compute $\tau(6120)$ and $\sigma(6120)$.	BTL -4	Analyzing	CO 5
13.(b)	Apply Wilson's theorem to find the reminder of (i) 52! When divided by 71 (ii) 76! When divided by 51.	BTL -3	Applying	CO 5
14.	Compute $\sigma(331), \sigma(1024), \sigma(2187)$ using Euler phi function.	BTL -3	Applying	CO 5
15.	Evaluate the remainder when 199^{2020} is divided by 28 and the remainder when 79^{1776} is divided by 24	BTL -4	Analyzing	CO 5
16. (a)	Find the remainder when $35^{32} + 51^{24}$ is divisible by 1785	BTL -4	Analyzing	CO 5
16.(b)	Compute $\tau(36)$ and $\sigma(36)$	BTL -3	Applying	CO 5
17.(a)	Compute $\tau(1560), \tau(6120)$	BTL -4	Analyzing	CO 5
17.(b)	Using Euler's Theorem, evaluate the ones digit in the decimal value of each (i) 17^{666} (<i>ii</i>) 23^{7777}	BTL -4	Analyzing	CO 5
18. (a)	Compute □(81), □(2187)	BTL -3	Applying	CO 5
18.(b)	Solve the linear congruence $15x \equiv 7(mod13)$	BTL -3	Applying	CO 5