

SRM VALLIAMMAI ENGEINEERING COLLEGE

SRM Nagar, Kattankulathur – 603 203.

(An Autonomous Institution)

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING & ELECTRONICS AND INSTRUMENTATION ENGINEERING

QUESTION BANK

IV SEMESTER

MA3423 – APPLIED MATHEMATICS FOR ELECTRICAL AND INSTRUMENTATION ENGINEERING

Regulation – 2024

Academic Year 2024- 2025

Prepared by

Dr.V. Vijayalakshmi, Associate Professor/Mathematics

SRM VALLIAMMAI ENGEINEERING COLLEGE

DEPARTMENT OF MATHEMATICS

QUESTION BANK

SUBJECT : MA3423 – APPLIED MATHEMATICS FOR ELECTRICAL AND INSTRUMENTATION ENGINEERING

SEM / YEAR:IV / II year EEE & E&I

UNIT I	UNIT I - ORDINARY DIFFERENTIAL EQUATIONS			
Higher	order linear differential equations with constant coefficients -	Method of	variation of parat	meters.
Q.No.	Question	Bloom's Taxono my Level	Competence	Course Outcome
	PART – A	~ ~		
1.	$Solve(D^2 + 5D + 6)y = 0.$	BTL-2	Understanding	CO 1
2	$Solve(D^2 + 7D + 12)y = 0.$	BTL-2	Understanding	CO 1
3	Solve $(D^2 + 3D + 2)y$	BTL-2	Understanding	CO 1
4	$Solve(D-1)^2 y = 0$	BTL-2	Understanding	CO 1
5	Find the complementary function of $y'' - 4y' + 4y = 0$.	BTL-1	Remembering	CO 1
6	Find the solution $(D^2 + 2D + 1)y$	BTL-2	Understanding	CO 1
7.	$Solve(D^2 + 1)y = 0.$	BTL-2	Understanding	CO 1
8 .	Solve $(D^2 + a^2)y = 0$	BTL-2	Understanding	CO 1
.9	Solve $(D^4 + D^3 + D^2)y = 0$	BTL-2	Understanding	CO 1
10	$Solve(D^4 - 1)y = 0.$	BTL-2	Understanding	CO 1
11	Find the complementary function $of(D^2 + 4)y = sin2x$.	BTL-1	Remembering	CO 1
12	Estimate the P.I of $(D^3 + 3D^2 + 3D + 1)y = e^{-x}$.	BTL-1	Remembering	CO 1
13	Solve $(D^3 - 6D^2 + 11D - 6)y$	BTL-1	Remembering	CO 1
14 .	Find the particular Integral for $(D^2 - 2D + 1)y = 2e^x$.	BTL-2	Understanding	CO 1
15.	Estimate the P.I of $(D^2 - 4D + 4)y = e^{2x}$	BTL-1	Remembering	CO 1
16 .	Find the P.I of $(D^2 + 4D + 5)y = e^{-2x}$	BTL-1	Remembering	CO 1
17.	Estimate the P.I of $(D^2 + 5D + 4)y = sin 2x$.	BTL-2	Understanding	CO 1
18 .	Find the P.I of $(D^2 + 1)y = cos2x$	BTL-1	Remembering	CO 1
19 .	Find the P.I of $(D^2 + 2)y = x^2$	BTL-1	Remembering	CO 1
20 .	Find the P.I. of $(D - a)^2 y = e^{ax} sinx$	BTL-1	Remembering	CO 1
21.	Describe method of variation of parameter	BTL-1	Remembering	CO 1
22.	Write the Wronskian in method of variation of parameter	BTL-1	Remembering	CO 1
23.	Write the value of P in finding particular integral in solving ODE using method of variation of parameter	BTL-1	Remembering	CO 1
24.	Write the value of Q in finding particular integral in solving ODE using method of variation of parameter	BTL-1	Remembering	CO 1
25.	Write the formula for finding particular integral in solving ODE using method of variation of parameter	BTL-1	Remembering	CO 1
	PART – B			
1.(a)	Analyze the solution of $(D^3 - 6D^2 + 11D - 6)y = e^{-2x} + e^{-3x}$	BTL-4	Analyzing	CO1

	0 0			
1.(b)	Analyze the solution of $(D^2 + 2D + 2)y = e^{-2x} + \cos 2x$.	BTL-4	Analyzing	CO1
2(a)	Analyze the solution of $(D^3 - 1)y = e^{2x}$.	BTL-4	Analyzing	CO1
2(b)	Analyze the solution of $(D^2 + 4) y = cos 2x + sin 3x$.	BTL-4	Analyzing	CO1
3(a)	Analyze the solution of $(2D^3 - D^2 + 4D - 2)y = e^x$	BTL-4	Analyzing	CO1
3(b)	Analyze the solution of $(D^2 + 3D + 2)y = sin 3x$.	BTL-4	Analyzing	CO1
4(a)	Analyze the solution of $(4D^2 + 4D - 3)y = e^{2x}$	BTL-4	Analyzing	CO1
4(b)	Analyze the solution of $(D^2 + 4)y = sin^3x + \cos 2x$.	BTL-4	Analyzing	CO1
5 (a)	Analyze the solution of $(D^2 + 1)y = sinx \sin 2x$.	BTL-4	Analyzing	CO1
5(b)	Analyze the solution of $(D^2 - 6D + 9)y = 2x^2 - x + 3$	BTL-4	Analyzing	CO1
6 (a)	Analyze the solution of $(D^2 - 2D + 5)y = e^x \cos 2x$	BTL-4	Analyzing	CO1
6(b)	Analyze the solution of $(D^2 - 4D + 4)y = e^{-4x} + 5\cos 3x$	BTL-4	Analyzing	CO1
7(a)	Analyze the solution of $(D^2 + 5D + 4)y = 4e^{-x} + x$	BTL-4	Analyzing	CO1
7(b)	Analyze the solution of $(D^2 + 4D + 3)y = e^{-x}sinx$	BTL-4	Analyzing	CO1
8 (a)	Analyze the solution of $(D^2 + 2D + 1)y = e^{-x}x^2$	BTL-4	Analyzing	CO1
8(b)	Analyze the solution of $(D^2 + 4)y = x^2 \cos 2x$.	BTL-4	Analyzing	CO1
9(a)	Analyze the solution of $(D^2 + 4D - 12)y = (x - 1)e^{2x}$	BTL-4	Analyzing	CO1
9(b)	Analyze the solution of $(D^2 + 1)y = xcosx$	BTL-4	Analyzing	CO1
	Apply method of variation of parameters to solve $y'' + y =$	BTL-3	Applying	CO1
10	tanx	5		
		DTI 2	A 1 '	CO1
11.	Apply method of variation of parameters to solve $(\mathbb{R}^2 + \mathbb{R}^2)$	BIL-3	Applying	COI
12	$(D^2 + a^2)y = tanax$	DTI 2	A nultuin a	CO1
12	Apply method of variation of parameters to solve $y + y = aptr$	BIL-3	Applying	COI
	cotx		C1	
13.	Apply method of variation of parameters to solve	BTL-3	Applying	CO1
	$(D^2 + a^2)y = secax$			
14.	Using the method of variation of parameter solve	BTL-3	Applying	CO1
	2 ^{3x}			
	$(D^2 - 6D + 9)y = \frac{e^{2x}}{x^2}$			
	Using the method of variation of parameter solve	BTL-3	Applying	
15	ρ^{-x}	DIL-J	rippiying	CO 1
10.	$(D^2 + 2D + 1)y = \frac{c}{r^2}$			001
	Solve the differential equation $v'' - 2v' + 2v = e^x tanx$ by	BTL-3	Applying	~ ~ .
16.	method of variation of parameters			CO 1
17	Apply method of variation of parameters to solve	BTL-3	Applying	
1/.	$(D^2 + a^2)y = cosecax$			CO 1
	Apply method of variation of parameters to solve	BTL-3	Applying	
18.	$(D^2 + 1)y = secx$			CO 1
				01
UNIT -	- II APPLICATIONS OF ORDINARY DIFFERENTIAL F	QUATIO	NS:	
Solution	n of ODE related to electric circuits, motion of a particle in a	resisting m	edium and simple	e harmonic
motion.	· 1	C	1	
		Bloom's		Course
O No	Question	Taxono	Competence	Outcome
V.110.	Question	my	Competence	
		Level		
	PART – A	[~
1	State Law of Natural growth or decomposition.	BTL-2	Understanding	CO 2

2.	State Law of cooling of bodies	BTL-2	Understanding	CO 2
3.	Define Kirchoff's Law.	BTL-2	Understanding	CO 2
4.	What are the fundamental assumptions for Electric Circuits	BTL-1	Remembering	CO 2
5.	Define L-R-C circuit	BTL-2	Understanding	CO 2
6.	Draw the L-R-C circuit.	BTL-1	Remembering	CO 2
7.	Write the differential equations satisfied by the current and charge in an inductive circuit	BTL-1	Remembering	CO 2
8.	Write the differential equations satisfied by the current and charge in an capacitive circuit	BTL-1	Remembering	CO 2
9.	Write down three different forms of the differential equation of motion of a particle which is projected vertically upwards in a resisting medium, in which resistance is proportional to the n th power of its velocity.	BTL-1	Remembering	CO 2
10.	Define limiting velocity of a particle in a resisting medium and write down its value for a medium (kv^n)	BTL-2	Understanding	CO 2
11.	Define simple harmonic motion	BTL-2	Understanding	CO 2
12.	Write down the equation of motion of a particle executing SHM?	BTL-2	Understanding	CO 2
13.	If a particle executes SHM, write down the expressions for its displacement from the mean position.	BTL-2	Understanding	CO 2
14.	If a particle executes SHM, write down the expressions for its velocity t from the mean position.	BTL-2	Understanding	CO 2
15.	If a particle executes SHM, what is the period of oscillations	BTL-2	Understanding	CO 2
16.	Write down the form of the equation of motion of a particle that executes damped free oscillations.	BTL-1	Remembering	CO 2
17.	Write down the form of equation of motion of a particle that executes forced oscillations with damping	BTL-1	Remembering	CO 2
18.	A simply supported beam of span 'L' is subjected to a point load 'W' at the center. What is the deflection at the center?	BTL-1	Remembering	CO 2
19.	In a cantilever beam, where is the slope and deflection is maximum?	BTL-1	Remembering	CO 2
20.	Solve the differential equation $\frac{d^2x}{dt^2} = -kmx$ where , $n^2 = km$.	BTL-1	Remembering	CO 2
21.	Assume an object weighing 2 lb stretches a spring 6 in. Find the equation of motion if the spring is released from the equilibrium position with an upward velocity of 16 ft/sec. What is the period of the motion?	BTL-1	Remembering	CO 2
22.	What is the differential equation of the simple harmonic motion given by $x=A\cos(nt+\alpha)$?	BTL-2	Understanding	CO 2
23.	Write the equation that represents a simple harmonic motion? The displacement of the system from the equilibrium position is x at time t and α is a positive constant.	BTL-2	Understanding	CO 2
24.	What is the time period of the simple harmonic motion represented by the equation $\frac{d^2x}{dt^2} + \alpha x = 0$?	BTL-2	Understanding	CO 2
25.	The equation of simple harmonic motion of a particle is $\frac{d^2x}{dt^2}$ +	BTL-2	Understanding	CO 2

	$0.2\frac{dx}{dt} + 35x = 0$. What is its time period approximately?			
	PART –B		-	
	Show that the frequency of free vibrations in a closed electrical			
1	circuit with inductance L and capacity C in series $\frac{30}{\pi\sqrt{LC}}$ per	BTL-2	Understanding	CO^{2}
	minute.			02
	The charge q on the plate of a capacitor of an electric circuits			
	with circuit elements L, R and C is given by $L \frac{d^2q}{dt^2} + R \frac{dq}{dt} + \frac{q}{c} =$			
	<i>Esinwt</i> . If the circuit is turned to resonance so that LCw ² =1,			
2	$CR^2 < 4L$ and with initial conditions $q = 0, \frac{dq}{dt} = 0$ at t=0. Show	BTL-2	Remembering	CO 2
	that $q = \frac{E}{Rw} \left[e^{\frac{-RT}{2L}} \left\{ cospt + \frac{R}{2LR} sinpt \right\} - coswt \right]$ where $p^2 =$			
	$\frac{1}{2} \frac{R^2}{R}$			
	LC 4L			
	a resistance of 5 ohms and a condenser of capacitance 4×10^{-4}			
3	farad. If $Q = I = 0$ at time t=0, find $Q(t)$, $I(t)$ when there is an	BTL-4	Analyzing	CO 2
	alternating emf 200cos100t.	G		~~ •
4	Solve $L\frac{dt}{dt}$ + Ri = E with the initial condition when t=0, i =1. E	BTL-3	Applying	CO 2
	is a constant.	0	11,7,8	
	The differential equation for a circuit in which self inductance L	1		CO^{2}
5	and capacitance C neutranze each other is $d^{2}i$ i o E to be a set of the first set of the set o	BTL-4	Analyzing	02
	$L_{dt^2}^2 + \frac{1}{c} = 0$. Find the current 1 as a function of t.		1	
	The charge q on the plate of a condenser satisfies the $d^2 q$		C	
	differential equation L, $L \frac{d^2q}{dt^2} + R \frac{d^2q}{dt} + \frac{q}{c} = 0$ and $q(0) = Q$,		Annalisa	
0	q'(0) =0. Show that if CR ² < 4L, $q = Qe^{-at} (coswt + $	BIL-4	Analyzing	CO 2
	$\left(\frac{\alpha}{w}sinwt\right)$, where $\alpha = \frac{R}{2L}$ and $w^2 = \frac{4L-cR^2}{4L^2c}$			
	In an LRC circuit the impressed voltage is 400cos250t volts.			
7	Find the current in the circuit when $t = 0.001$ second, if L =1	BTL-3	Applying	
	henry, $R = 400$ ohms and $c = 0.16 \times 10^{-4}$ farad and the initial	DILU	· • • • • • • • • • • • • • • • • • • •	CO 2
8	For an electric circuit with $L = 0.05$ henry $R = 20$ ohms $c = 100$			
0.	x 10^{-6} farad, the applied emf is 100 volts. Compute the charge q	BTL-4	Analyzing	CO 2
	at time t. If initially q=0 and i=0			
9	An electric circuit consists of an inductance of 0.1 henry, a			
	resistance of 20 ohms and a condenser of capacitance 25 microfarads (25×10^{-6} farad). Find the charge and the current Lat	BTL-4	Analyzing	CO 2
	any time t given that $q = 0.05$ coulomb and $i=0$ at t=0.			
10	The differential equation of motion of a particle, which executes			
	forced oscillations without damping is $\frac{d^2x}{dx^2} + k^2x =$			<u> </u>
	k^2 asinnt. Find the displacement x of the particle at time t.	BTL-4	Analyzing	CO 2
	when $n \neq k$ given that the particle starts from rest from the			
	origin initially.			~ ~ ~
11.	The differential equation of motion of a particle, which executes $d^2x = dx$			CO 2
	forced oscillations with damping is $\frac{d^2x}{dt^2} + k\frac{dx}{dt} + n^2x =$	BTL-3	Applying	
	$n^2asinnt$ (k<2n). If the particle starts from rest the origin			
	initially, find the displacement of the particle at time t.			

12.	A stretched elastic horizontal string has one end fixed and a particle of mass m attached to the other. Find the equations of	BTI -4	Analyzing	60.0
	and e its elongation due to a weight mg.	DILT	Thuryzing	0 2
13.	The differential equation of motion of a particle, which executes			
	forced oscillations without damping is $\frac{d^2x}{dx^2} + k^2x =$			GO 3
	k^2 asinnt. Find the displacement x of the particle at time t,	BTL-3	Applying	CO 2
	when $n = k$ given that the particle starts from rest from the origin initially.			
14.	A particle is projected with velocity V directly away from a			
	fixed point at a distance b from it. If the acceleration be μ times	BTL-4	Analyzing	CO 1
	the fixed point find the amplitude of the SHM			02
15.	A particle is executing a Simple Harmonic Motion about the			
	origin 0, from which the distance x of the particle is measured.	DTI 2	Annihuina	
	Initially $x = 20$ and velocity = 0 and the equation of motion is	DIL-3	Apprying	
	$\ddot{x} + x = 0$; Solve for x and find period and amplitude	-		CO 2
16.	Assume an object weighing 2 lb stretches a spring 6 in. Find the	5		
	equation of motion if the spring is released from the equilibrium	BTL-4	Analyzing	CO^2
	position with an upward velocity of 16 ft/sec. What is the period	0	, ,	002
18			-	
1/.	A body weighing 20 kg is nung from a spring. A pull of 40 kg	1		
	by 20 cm below the static equilibrium position and then released.			CO 2
	Find the displacement of the body from its equilibrium position	BTL-3	Applying	
	at time t seconds, the maximum velocity and the period of		11	
10	oscillation.			
18.	A particle of mass m lying on a smooth horizontal table is			
	attached to two elastic strings whose natural lengths are l_1 and l_2			
	and moduli λ_1 and λ_2 respectively. The other ends of the strings			
	are fixed to two points on the table at a distance greater than $L = L$. Show that if the particle withouts in the line of the string	BTL-4	Analyzing	CO 2
	$t_1 + t_2$. Show that if the particle vibrates in the line of the string,			
	its period will be $2\pi \left(\frac{m}{\left(\frac{\lambda_1}{l_1} + \frac{\lambda_2}{l_2}\right)}\right)$			
UNIT -	III ANALYTIC FUNCTIONS			
Analytic	c functions- Necessary and sufficient conditions for analyticit	v in Cartes	sian coordinates –	properties
– Harmo	onic conjugates-Construction of analytic function			1 1
		Bloom's	Competence	Course
O.No.	Ouestion	Taxono		Outcome
		my Lovol		
	ΡΔΡΤ – Δ	Level		
1.	Define analytic function.	BTL-2	Understanding	CO 3
	Identify the constants a,b,c if $f(z) = x + ay + i(bx + \overline{cy})$ is			
2.	analytic.	BTL-2	Understanding	CO 3
3.	State function of a complex variable.	BTL-2	Understanding	CO 3

4.	State necessary and sufficient condition for Cartesian	BTL-1	Remembering	CO 3
			6	
5.	Show that $ z ^2$ is not analytic at any point.	BTL-2	Understanding	CO 3
6.	Show that an analytic function in a region R with constant modulus is constant.	BTL-1	Remembering	CO 3
7.	Show that $u = 2x - x^3 + 3xy^2$ is harmonic and determine its harmonic conjugate.	BTL-1	Remembering	CO 3
8.	If $f(z)$ is an analytic function whose real part is constant, Point out $f(z)$ is a constant function	BTL-1	Remembering	CO 3
9.	Test the analyticity of the function $f(z) = e^{-z}$	BTL-2	Understanding	CO 3
10.	Examine if $f(z)=z^3$ is analytic ?	BTL-1	Remembering	CO 3
11.	Define entire function	BTL-2	Understanding	CO 3
12.	State Cauchy Riemann equations in polar coordinates	BTL-1	Remembering	CO 3
13.	Define harmonic functions	BTL-2	Understanding	CO 3
14.	Identify the constants a,b,c if $f(z) = x - 2ay + i(bx - cy)$ is analytic.	BTL-1	Remembering	CO 3
15.	Test the analyticity of $w = \sin z$	BTL-2	Understanding	CO 3
16 .	Discuss the analyticity of the function $f(z) = 1/z$	BTL-1	Remembering	CO 3
17.	Determine whether the function $2xy+i(x^2-y^2)$ is analytic or not?	BTL-1	Remembering	CO 3
18 .	Discuss the analyticity of the function $f(z) = \cosh z$	BTL-2	Understanding	CO 3
19.	Find where the function ceases to be analytic $f(z) = \frac{z^2 - 4}{z^2 + 1}$	BTL-1	Remembering	CO 3
20 .	Identify the real and imaginary parts of $f(z) = 2z^3 - 3z$.	BTL-2	Understanding	CO 3
21.	Write the Milne Thomson method formula $f(z)$ if u is given.	BTL-1	Remembering	CO 3
22.	Prove that sinhz is analytic	BTL-2	Understanding	CO 3
23.	Check whether $w = \overline{z}$ is analytic everywhere?	BTL-1	Remembering	CO 3
24.	Write the Milne Thomson method formula $f(z)$ if v is given.	BTL-1	Remembering	CO 3
25.	Test the analyticity of the function $f(z) = e^{z}$	BTL-2	Understanding	CO 3
	PART –B			
1.	Describe the real and imaginary parts of an analytic function $w = u+iv$ satisfy the Laplace equation in two dimension. via $\nabla^2 u = 0$ and $\nabla^2 u = 0$.	BTL-2	Understanding	CO 3
2.	Given that $u + v = \frac{sin2x}{cosh2y - cos2x}$, Estimate the analytic function whose real part is u.	BTL-2	Remembering	CO 3
3.	Estimate the analytic function $w=u + iv$ if $u = e^{x}(xcosy - ysiny)$.	BTL-3	Applying	CO 3
3.	If w = f(z) is analytic then Show that $\left(\frac{\partial^2}{\partial x^2}\right) + \left(\frac{\partial^2}{\partial y^2}\right) \log f(z) ^2 = 0.$	BTL-3	Applying	CO 3
4.	Estimate the analytic function $f(z) = u + iv$ given the imaginary part is $v = x^2 - y^2 + \frac{x}{x^2 + y^2}$.	BTL-4	Analyzing	CO 3
5.	If f (z) is a regular function of z, Show that	BTL-3	Applying	CO 3

	$\nabla^2 f(z) ^2 = 4 f'(z) ^2.$			
6.	Test whether $w = \frac{z}{1-z}$ maps the upper half of the z – plane to the upper half of the w-plane and also find the image of the unit circle of the z- plane.	BTL-4	Analyzing	CO 3
7.	Show that the function $u(x,y)=3x^2y+2x^2-y^3-2y^2$ is harmonic . Fins also the conjugate harmonic function v.	BTL-3	Applying	CO 3
8.	If f (z) = u + iv is an analytic function of z, then formulate that $\nabla^2 [\log f'(z)] = 0.$	BTL-4	Analyzing	CO 3
9.	Point out that $\nabla^2 \operatorname{Re} f(z) ^2 = 2 f'(z) ^2$	BTL-3	Applying	CO 3
10.	Describe an analytic function with constant modulus is constant.	BTL-4	Analyzing	CO 3
11.	If $f(z) = u + iv$ is an analytic function then prove that u and v are both harmonic functions.	BTL-3	Applying	CO 3
12.	Determine the analytic function $w = u + iv$ if $u = x^3 - 3xv^2 + 3x^2 - 3v^2 + 1$	BTL-3	Applying	CO 3
13.	Show that the function are harmonic and find harmonic conjugate functions $u = \frac{1}{2} \log (x^2 + y^2)$	BTL-4	Analyzing	CO 3
14.	Show that the function are harmonic and find harmonic conjugate functions v= sinhxcosy	BTL-3	Applying	CO 3
15.	Show that the function are harmonic and find harmonic conjugate functions $u = e^x \cos y$	BTL-3	Applying	CO 3
16.	If $u-v = (x-y)(x^2+4xy+y^2)$ and $f(z) = u+iv$ is an analytic function of $z = x+iy$, find $f(z)$ interms of z .	BTL-3	Applying	CO 3
17.	Find the regular function $f(z)$ whose imaginary part is given by $6xy-5x+3$	BTL-3	Applying	CO 3
18.	Find the regular function $f(z)$ whose real part is given by $e^x \cos y$	BTL-4	Analyzing	CO 3
UNIT –	IV CONFORMAL MAPPING nal mapping – Mapping by functions $w = z + c \cdot w = cz \cdot w = 1/z$	– Bilinea	· Transformation	
Q.No.	Question	Bloom's Taxono my Level	Competence	Course Outcome
	PART – A			
1.	Define conformal mapping.	BTL-1	Remembering	CO 4
2.	Give the image of the circle $ z = 3$ under the transformation w $= 5z$.	BTL-1	Remembering	CO 4
3.	Under the transformation $w = \frac{1}{z}$ give the image of the circle $ z - 1 = 1$ in the complex plane	BTL-1	Remembering	CO 4
4.	Explain that a bilinear transformation has at most 2 fixed points.	BTL-1	Remembering	CO 4
5.	Find the fixed points of the transformation $w = \frac{z-1}{z+1}$	BTL-1	Remembering	CO 4

	Evaluate the image of hyperbola $x^2 - y^2 = 1$ under the			
6.	transformation $w = \frac{1}{2}$	BTL-1	Remembering	CO 4
	2			
7.	Formulate the critical points of the transformation $w = z + \frac{1}{z}$	BTL-1	Remembering	CO 4
	Formulate the bilinear transformation which maps the points			
8.	z = 0,-i,-1 into $w = i,1,0$ respectively.	BTL-2	Understanding	CO 4
	Identify the invariant point of the bilinear transformation $w =$			
9.	$\frac{2z+6}{2z+6}$	BTL-2	Understanding	CO 4
	<i>z</i> +7			
10.	Estimate the invariant points of the transformation $w = \frac{6z - 9}{z}$	BTL-2	Understanding	CO 4
	Estimate the invariant point of the bilinear transformation $w =$			
11.	$\frac{1+z}{1-z}$	BTL-1	Remembering	CO 4
	Give the image of the circle $ z = 2$ under the transformation w	G		
12.	= 3z.	BTL-2	Understanding	CO 4
		0		
13	Under the transformation $w = \frac{1}{z}$ give the image of the circle	BTL-2	Understanding	CO4
	z-2 = 2 in the complex plane.	DIL 2		00 4
	Find the image of $2z + y - 3 = 0$ under the transformation w =		0	
14.	z+2i	BTL-2	Understanding	CO 4
15	Find the image of the region $y > 1$ under the transformation $w =$	BTI 2	Understanding	CO 4
13.	(1-i)z	DIL-2	Understanding	04
16.	Give the image of the circle $ z = 3$ under the transformation w $= 3z$.	BTL-1	Remembering	CO 4
17.	Determine the image of $1 < x < 2$ under the mapping $w = 1/z$	BTL-1	Remembering	CO 4
18 .	Define cross ratio of four points	BTL-1	Remembering	CO 4
<u>19</u> .	Define Invariant points of Bilinear Transformation.	BTL-1	Remembering	CO 4
20.	Define Isogonal mapping	BTL-1	Remembering	CO 4
21.	Obtain the invariant points of the transformation $w = 2 - \frac{z}{z}$	BTL-1	Remembering	CO 4
22.	Find the fixed points of $w = \frac{2z-5}{z+4}$	BTL-1	Remembering	CO 4
23.	Find the fixed points of $w = \frac{3z-4}{z-1}$	BTL-1	Remembering	CO 4
24.	Find the invariant points of $w = z^3$	BTL-2	Understanding	CO 4
25.	Find the invariant points of $w = iz^2$	BTL-1	Remembering	CO 4
	PART –B			
	Identify the image of the infinite strip $\frac{1}{2} < y < \frac{1}{2}$ under the			
_	$4 y \leq -$ under the $4 2$	BTL-3	Applying	CO 4
	transformation $w = 1/z$.	212.5	Kky	
	Point out the bilinear transformation that maps the point $z_1 =$			
2.	1, $z_2 = i$, $z_3 = -1$ into the points $w_1 = i$, $w_2 = 0$, $w_3 = -i$	BTL-4	Analyzing	CO 4
	respectively.		· ······ / Ziiig	001

3.	Give the bilinear transformation which maps $z=1,0,-1$ into $w=0,-1,\infty$ respectively. What are the invariant points of the transformation?	BTL-3	Applying	CO 4
4.	Determine the region R' of the w plane into which R is mapped under the transformation $w = z + (1-2i)$ bounded by the lines $x = 0$, $y=0$, $x=2$, $y=1$.	BTL-3	Applying	CO 4
5.	Consider the transformation $w = 2z$ and determine the region R' of the w plane into which the triangular region R enclosed by the lines $x = 0$, $y = 0$, $x+y=1$ in the z plane is mapped under the map.	BTL-3	Applying	CO 4
6.	Draw the image of the square whose vertices are at $(0,0)$, $(1,1)$, $(0,1)$, $(1,0)$ in the z plane under the transformation w = $(1+i)z$	BTL-3	Applying	CO 4
7.	Find the image of the region bounded by $(0,0),(1,0),(1,2),(0,2)$ by the transformation w = $(1+i)z + 2-i$. Sketch the image.	BTL-4	Analyzing	CO 4
8.	Show that the transformation $w = 1/z$ maps a circle in z plane to a circle in a w plane or to a straight line if the circle in z plane passes through the origin.	BTL-3	Applying	CO 4
9.	Find the image of $ z - 3i = 3$ under the mapping w = $1/z$	BTL-3	Applying	CO 4
10.	Find the image of $ z - 1 = 1$ under the mapping w = $1/z$	BTL-4	Analyzing	CO 4
11.	Find the image of the half plane $x > c$ when $c > 0$ under the transformation $w = 1/z$	BTL-3	Applying	CO 4
12.	Find the image of $ z - 2i = 2$ under the mapping w = $1/z$	BTL-3	Applying	CO 4
13.	Find the bilinear transformation which maps the points $z = 0$, - 1,i onto $w = i, 0, \infty$. Also find the image of the unit circle $ z =1$	BTL-3	Applying	CO 4
14.	Determine the bilinear transformation which maps $z = 0,1,\infty$ onto i, -1, -i respectively.	BTL-4	Analyzing	CO 4
15.	Find a bilinear transformation which maps the points i, -i,1of the z plane into $0,1, \infty of$ the w plane respectively.	BTL-3	Applying	CO 4
16	Show that $w = \frac{i-z}{i+z}$ maps the real axis of the z plane into the circle $ w = 1$	BTL-4	Analyzing	CO 4
17	Show that the transformation $w = i\left(\frac{1-z}{1+z}\right)$ transforms the circle $ z =1$	BTL-3	Applying	CO 4
18.	Prove that $w = \frac{z}{1-z}$ maps the upper half of the z plane onto the upper half of the w plane. What is the image of the circle $ z =1$ under the transformation?	BTL-4	Analyzing	CO 4
UNIT –	V COMPLEX INTEGRATION			
Cauchy	's integral theorem - Cauchy's integral formula - Singular	ities – Re	sidues - Cauchy	's Residue
theorem	-Applications of circular contour (with poles NOT on real ax	is)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~
		Bloom'	Competence	Course
O No	Quartian	S		Outcom
Q.INO.	Quesuon	I axono		e
		my Lovel		
		Level		
1	State Cauchy's integral theorem	BTI 1	Remembering	CO 5
1. 2	Define isolated singularity	BTL-1	Demomboring	CO 5
4.	Define isolated singularity	DIL-I	Keineinbering	05

3.	Identify the type of singularity of function $Sin\left(\frac{1}{1-z}\right)$.	BTL-2	Understanding	CO 5
4.	State Cauchy's residue theorem	BTL-1	Remembering	CO 5
5.	State Cauchy's integral formula	BTL-2	Understanding	CO 5
6.	Identify the value of $\int_{C} e^{z} dz$, where C is $ z = 1$?	BTL-2	Understanding	CO 5
7.	Estimate the residue of the function $f(z) = \frac{4}{z^3(z-2)}$ at a simple pole.	BTL-1	Remembering	CO 5
8.	Calculate the residue at z =0 of $f(z) = \frac{1 - e^z}{z^3}$.	BTL-2	Understanding	CO 5
9.	Calculate the residue of the function $f(z) = \frac{4}{z^3(z-2)}$ at a simple pole.	BTL-2	Understanding	CO 5
10.	Determine the residues at poles of the function $f(z) = \frac{z+4}{(z-1)(z-2)}.$	BTL-2	Understanding	CO 5
11.	Expand the principal part and residue at the pole of the function $f(z) = \frac{2z+3}{(z+3)^2}$	BTL-1	Remembering	CO 5
12.	Evaluate $\oint_C \frac{z+2}{z} dz$ where <i>C</i> is the circle $ z = 2$ in the <i>z</i> – plane.	BTL-2	Understanding	CO 5
13.	Evaluate $\frac{1}{2\pi i} \int_{C} \frac{z^2 + 5}{z - 3} dz$ where <i>C</i> is $ z = 4$ using Cauchy's integral formula.	BTL-1	Remembering	CO 5
14.	Integrate $\int_{C} \frac{dz}{z+4}$ where C is the circle $ Z =2$.	BTL-1	Remembering	CO 5
15.	Integrate $\int_C \frac{e^z}{z-1} dz$ if C is $ z = 2$.	BTL-2	Understanding	CO 5
16.	Estimate the value of $\int_C (x^2 - y^2 + 2ixy)dz$, where C is $ z = 1$?	BTL-2	Understanding	CO 5
17.	Integrate $\int_{C} \frac{(2z^2+5)dz}{(z+2)^3(z^2+4)}$ where C is the square with vertices at 1+i,2+i,2+2i,1+2i	BTL-2	Understanding	CO 5
18.	Evaluate $\oint_c \frac{e^{-z}}{z+1} dz$ where C is the circle $ Z = 2$.	BTL-1	Remembering	CO 5
19.	Integrate $\int_{C} \frac{\cos z dz}{z}$	BTL-2	Understanding	CO 5

20 .	Define essential singularity	BTL-2	Understanding	CO 5
21.	Discuss singularity of $f(z) = sin \frac{1}{1-z}$ at z=1	BTL-2	Understanding	CO 5
22.	Discuss the nature of singularity of $f(z) = \frac{z - sinz}{z^3}$ at $z = 0$.	BTL-2	Understanding	CO 5
23.	Determine the poles of $f(z) = \frac{1}{z^4 + 1}$	BTL-1	Remembering	CO 5
24.	Determine the poles of $f(z) = \frac{1+e^z}{sinz+zcosz}$	BTL-2	Understanding	CO 5
25.	Define singularity of a function.	BTL-1	Remembering	CO 5
	PART –B		Γ	
1.	Using contour integration estimate $\int_{-\infty}^{\infty} \frac{x^2 dx}{(x^2 + a^2)(x^2 + b^2)}, a > 0,$ b > 0.	BTL-2	Understanding	CO 5
2.	Estimate $\int_{0}^{\infty} \frac{dx}{(x^2 + a^2)^2}$, $(a > 0)$ Using Contour Integration.	BTL-2	Remembering	CO 5
3.	Apply Cauchy's integral formula solve $\int_{C} \frac{\cos \pi z^2 + \sin \pi z^2}{(z-1)(z-2)} dz$ where C is the circle $ z = 3$.	BTL-3	Applying	CO 5
4.	Using Cauchy's residue theorem give the value of $\int_{ z =2} \frac{3z^2 + z - 1}{(z^2 - 1)(z - 2)} dz,$	BTL-3	Applying	CO 5
5.	Apply Cauchy's residue theorem, Calculate the value of $\int_{ z =3} \frac{\cos \pi z^2 + \sin \pi z^2}{(z+1)(z+2)} dz,$	BTL-4	Analyzing	CO 5
6.	Evaluate $\int_{0}^{2\pi} \frac{d\theta}{a+b\sin\theta}$, $a > b $, Using Contour Integration.	BTL-3	Applying	CO 5
7.	Using Cauchy's integral formula calculate $\int_{C} \frac{z+4}{z^2+2z+5} dz$ where C is the circle (i) $ z+1+i = 2$ (ii) $ z+1-i = 2$.	BTL-4	Analyzing	CO 5
8.	Point out the poles of $\frac{z^2}{(z-1)^2(z+2)}$ and hence evaluate $\int_{ z =3} \frac{z^2}{(z-1)^2(z+2)} dz.$	BTL-3	Applying	CO 5
9.	Formulate $\int_{ z =4}^{} \frac{e^z}{(z^2 + \pi^2)^2} dz$, using Cauchy's residue theorem.	BTL-4	Analyzing	CO 5
10.	Evaluate $\int_{C} \frac{z^2 dz}{(z-1)^2 (z+2)} $ where $C is z = 3.$	BTL-3	Applying	CO 5

11.	Formulate $\int_{0}^{2\pi} \frac{d\theta}{13 + 5\sin\theta}$, using the method of contour	BTL-4	Analyzing	CO 5
	integration.			
12.	If $f(a) = \int_{C} \frac{3z^2 + 7z + 1}{(z - a)} dz$ where C is the circle $ z = 2$, Identify $f(3), f(1), f'(1-i), f''(1-i)$.	BTL-3	Applying	CO 5
13.	Evaluate $\int_{0}^{2\pi} \frac{1+2\cos\theta}{5+4\cos\theta} d\theta$, using the method of contour	BTL-3	Applying	CO 5
14	integration			
14.	Using Cauchy's integral formula calculate $\int_{C} \frac{4-3z}{z(z-1)(z-2)} dz$ where C is the circle $ z = 3/2$	BTL-4	Analyzing	CO 5
15.	Using Cauchy's integral formula calculate $\int_C \frac{2z+1}{(z^2+z)} dz$ where C is the circle $ z = 1/2$	BTL-3	Applying	CO 5
16.	Determine the poles of the following function and residue at each pole $f(z) = \frac{z^2}{(z-1)(z-2)^2}$	BTL-3	Applying	CO 5
17.	Evaluate $\int \frac{12z-7}{(z-1)^2(2z+3)} dz$ over the region c where c is $ z = 2$ using Cauchy residue theorem	BTL-3	Applying	CO 5
18.	Estimate $\int_{-\infty}^{\infty} \frac{dx}{(x^2+1)^2}$, Using Contour Integration.	BTL-3	Applying	CO 5

