SRM VALLIAMMAI ENGINEERING COLLEGE (An Autonomous Institution)

S.R.M. Nagar, Kattankulathur - 603203

DEPARTMENT OF MATHEMATICS

QUESTION BANK

II YEAR / IV SEMESTER

B.E Electronics and Communication Engineering

MA3424 -APPLIED MATHEMATICS FOR ELECTRONICS AND COMMUNICATION ENGINEERING

Regulation – 2023

Academic Year – 2024 - 25

Prepared by

Dr. B. Vasuki, Assistant Professor / Mathematics

SRM VALLIAMMAI ENGNIEERING COLLEGE (An Autonomous Institution)

SRM Nagar, Kattankulathur – 603203.

DEPARTMENT OF MATHEMATICS

SUBJECT: MA3424- APPLIED MATHEMATICS FOR ELECTRONICS AND COMMUNICATION ENGINEERING SEM / YEAR: IV / II Year B.E. / ECE

Q.No	QUESTIONS	BT Level	Competence	COS
Discret	RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS are and continuous random variables – Two dimensional random varia al and conditional distributions	bles-Joint	6L distributions –	
	Part - A (2 MARK QUESTIONS)			
1.	Define random variable.	BTL-2	Understanding	CO1
2.	Define Discrete random variable.	BTL-2	Understanding	CO1
3.	Define Continuous random variable.	BTL-2	Understanding	CO1
4.	Define Probability mass function of a discrete random variable	BTL-1	Remembering	CO1
5.	Define Probability density function of a continuous random variable	BTL-2	Understanding	CO1
6.	Define Cumulative distribution function of a discrete random variable	BTL-1	Remembering	CO1
7.	Define Cumulative distribution function of a continuous random variable	BTL-1	Remembering	CO1
8.	Write any two properties of Cumulative distribution function.	BTL-2	Understanding	CO1
9.	Define expectation of a discrete and continuous random variables,	BTL-2	Understanding	CO1
10.	A random variable X has the following probability function. Find kx01234P(x)k2k5k7k9k	BTL-2	Understanding	CO1
11.	The number of hardware failures of a computer system in a week of operations has the following p.d.f, Find the mean of the number of failures in a week.No.of failures0123456Probability.18.28.25.18.06.04.01	BTL-2	Understanding	CO1
12.	The number of hardware failures of a computer system in a week of operations has the following p.d.f, Calculate the value of K.No.of failures0123456ProbabilityK2K2K3K4K	BTL-2	Understanding	CO1
13.	Check whether the function given by $f(x) = \frac{x+2}{25}$ for x=1, 2,3,4,5 can serve as the probability distribution of a discrete random variable.	BTL-2	Understanding	CO1
14.	A continuous random variable X has the probability density function given by $f(x) = 3x^2, 0 < x < 1$, Find K such that $P(X > K) = 0.5$	BTL-2	Understanding	CO1
15.	The no. of monthly breakdowns of a computer is a RV having Poisson distribution with mean 1.8. Find the probability that this computer will function for a month with only one breakdown.	BTL-2	Understanding	CO1
16.	If X is a Poisson variate such that $2P(X = 0) + P(X = 2) = 2P(X = 0)$			

	1), find find the probability distribution of X	BTL-2	Understanding	
				CO1
17.	If the random variable X takes the values 1,2,3 and 4 such that 2P(X = 1) = 3P(X = 2) = P(X = 3) = 5P(X = 4), find the probability distribution of X	BTL-2	Understanding	CO1
18.	The RV X has the following probability distribution: x -2-101 $P(x)$ 0.4k0.20.3Find k and the mean value of X	BTL-2	Understanding	CO1
19.	If $f(x) = K(x + x^2)$ in $1 < x < 5$ is a pdf of a continuous random variables. Find the value of K.	BTL-2	Understanding	CO1
20.	The pdf of a continuous random variable X is $f(x) = k(1+x), 2 < x < 5$ Find k.	BTL-2	Understanding	CO1
21.	For a continuous distribution $f(x) = k(x - x^2), 0 \le x \le 1$. Find k.	BTL-2	Understanding	CO1
22.	The probability function of a random variable is $P(X=x) = \frac{1}{2^x}$, x =1,2,3,,find P(X is even)	BTL-2	Understanding	CO1
23.	The probability function of a random variable is $P(X=x) = \frac{1}{2^x}$, x =1,2,3,,find $P(X \ge 4)$	BTL-2	Understanding	CO1
24.	If $f(x) = kx^2$, $0 < x < 3$, is to be a density function, find the value of k.	BTL-2	Understanding	CO1
25.	If $F(x) = 1 - e^{-\frac{x}{5}}$, $x \ge 0$, then find the probability density function of x.	BTL-2	Understanding	CO1
	PART – B (16 MARK QUESTIONS)			
1.	A random variable X has the following probability distribution: $\begin{array}{c c c c c c c c c c c c c c c c c c c $	BTL-3	Applying	CO1
2	The probability mass function of a discrete R. V X is given in the following table:X-2-10123P(X=x)0.1K0.22k0.3kFind (1) Find the value of k, (2) P(X<1),(3) P(-1 <x <math="">\leq 2) (4) cdf of x</x>	BTL-3	Applying	CO1
3.	The probability mass function of a discrete r.v X is given in the table. $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	BTL-3	Applying	CO1
4.	If the discrete random variable X has the probability function given by the table. x 1234 $P(x)$ $k/3$ $k/6$ $k/3$ $k/6$ Find the value of k and Cumulative distribution of X.	BTL-3	Applying	CO1
5.	The probability mass function of a RV X is given by $P(X = r) =$			

	kr^{3} ,	BTL-3	Applying	CO1
	$r = 1,2,3,4$. Find (1) the value of k, (2) $P(\frac{1}{2} < X < \frac{5}{2}/X > 1)$			
6.	The probability distribution of an infinite discrete distribution is given by	BTL-3	Applying	CO1
	P[X = j] = $\frac{1}{2^{j}}$ (j = 1,2,3) Find (1)Mean of X, (2)P [X is even], (3) P(X is odd) (4) P(X is divisible by 3)	DIL-3	Apprying	
7.	Find the mean and variance of the following probability distribution			
	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	BTL-3	Applying	CO1
9.	If a random variable X has p.d.f $f(x) = \begin{cases} \frac{1}{4}, X < 2\\ 0, Otherwise \end{cases}$ Find (a) $P(X < 1)$ (b) $P(X > 1)$ (c) $P(2X + 3 > 5)$.	BTL-3	Applying	CO1
10.	Find the MGF of the random variable X having the probability density function $f(x) = \begin{cases} \frac{x}{4}e^{-\frac{x}{2}}, & x > 0\\ 0, & \text{otherwise} \end{cases}$. Also find the mean and	BTL-3	Applying	CO1
	variance			
11.	A random variable X has c.d.f $F(x) = \begin{cases} 0, if x < -1 \\ a(1+x), if -1 < x < 1 \\ 1, if x \ge 1 \end{cases}$	BTL-3	Applying	CO1
12.	Find the value of a. Also $P(X > 1/4)$ and $P(-0.5 \le X \le 0)$.			
	If $f(x) = \begin{cases} ax, 0 \le x \le 1 \\ a, 1 \le x \le 2 \\ 3a - ax, 2 \le x \le 3 \\ 0, elsewhere \end{cases}$ is the p.d.f of X. Calculate (i) The value of a , (ii) The cumulative distribution function of X (iii) If X ₁ , X ₂ and X ₃ are 3 independent observations of X. Find the probability that exactly one of these 3 is greater than 1.5?	BTL-3	Applying	CO1
13.	The Probability distribution function of a R.V. X is given by $f(x) = \frac{4x(9-x^2)}{81}, \ 0 \le x \le 3$. Find the mean, variance.	BTL-4	Analyzing	CO1
14.	If the CDF of a R.V.X is $F(x) = \begin{cases} 1 - \frac{4}{x^2}, & \text{if } x > 2\\ 0 & \text{if } x \le 2 \end{cases}$ find (1) $P(X < 3)$ (2) $P(X \ge 3)$ (iii) $P(4 < X < 5)$	BTL-3	Applying	CO1
15.	A continuous random variable X has the pdf $f(x) = kx^4$, $-1 < x < 0$. Find the value of k and P [X >-1/2 / X < -1/4]	BTL-3	Applying	CO1
16.	A continuous random variable X has a pdf $f(x) = 6x(1-x), 0 \le x \le 1$. Determine b if $P(X < b) = P(X > b)$.	BTL3	Applying	CO1
17.	A random variable X has a pdf $f(x) = kx (2-x), 0 < x < 2$. Find the cdf.	BTL-4	Analyzing	CO1
18.	Two cards are drawn successively with replacement from a well shuffled deck of 52 cards. Find the probability distribution of number of kings.	BTL-4	Analyzing	CO1
UNIT I	II TWO – DIMENSIONAL RANDOM VARIABLES		6L	

conte	ation - regression			
1.	PART-A(2 MARK QUESTIONS) The joint probability distribution of X and Y is given by			
1.				CO2
	$p(x,y) = \frac{x+y}{21},$	BTL-2	Understanding	
	x = 1,2,3; y = 1, 2. Find the marginal probability distributions of X			
2.	The joint probability function (X,Y) is given by $P(x, y) =$			CO2
	k(2x+3y),	BTL-2	Understanding	
2	x = 0,1,2 $y = 1,2,3$, Find the value of K.			
3.	Find the probability distribution of $X + Y$ from the bivariate distribution of (X, Y) given below:			CO2
	distribution of (X, 1) given below.			02
	X Y 1 2	BTL-2	Understanding	
	1 0.4 0.2			
	2 0.3 0.1			
4.	Let X and Y have the joint p.m.f			
	Y X 0 1 2			
		BTL-2	Understanding	CO2
	0 0.1 0.4 0.1			
5.	Find P(X+Y > 1) Find the marginal distributions of X and Y from the bivariate			
5.	distribution of (X,Y) given below:			
			TT. d	CO2
	X Y 1 2	BTL-2	2 Understanding	
	1 0.1 0.2			
-				
6.	The joint probability distribution function of the random variable (X,Y) is given by $f(x,y) = k(x^3y - xy^3), 0 \le x \le 2, 0 \le y \le 2$.	BTL-2	Understanding	CO2
	$(X, Y) \text{ is given by } f(x, y) = k(x y - xy), 0 \le x \le 2, 0 \le y \le 2.$ Derive the value of k	DIL-2	Onderstanding	002
7.	If the joint probability density function of a random variable X and Y			
	$\int \frac{x^3 y^3}{10} \cdot 0 < x < 2.0 < y < 2$			
	is given by $f(x, y) = \begin{cases} \frac{x^3 y^3}{16}, & 0 < x < 2, \\ 0, & otherwise \end{cases}$.	BTL-2	Understanding	CO2
	Obtain the marginal density function of X.			
8.	The joint probability density of a two dimensional random variable		Understanding	CO2
	(X,Y) is given by $f(x,y) = \begin{cases} kxe^{-y}; 0 \le x < 2, y > 0\\ 0, otherwise \end{cases}$. Evaluate k.	BTL-2		
9.	The joint probability density function of a random varaiable (<i>X</i> , <i>Y</i>) is		Understanding	CO2
9.	$f(x, y) = k e^{-(2x+3y)}, x \ge 0, y \ge 0$. Point out the value of k.	BTL-2	Understanding	02
10.	$f(x,y) - ke$, $x \ge 0$, $y \ge 0$. Found out the value of k.		Understanding	
10.	If the joint pdf of (X, Y) is $f(x, y) = \begin{cases} \frac{1}{4}, 0 < x, y < 2\\ 0, otherwise \end{cases}$.		Understanding	CO2
	(0, otherwise)	BTL-2		
11.	Find $P(X + Y \le 1)$ Let X and Y be random variables with joint density function		Understanding	CO2
11.		BTL-2	onderstanding	
	$f(\mathbf{x},\mathbf{y}) = \begin{cases} 4xy , & 0 < x < 1 \\ 0, & otherwise \end{cases}$ formulate the value of E(XY)			
12.	The joint density function of a random variable X and Y is $f(x, y) =$			
	$8xy$, $0 < y \le x \le 1$.Calculate the marginal probability function of	BTL-2	Understanding	CO2
	X			

13.	Write the condition for two independent random variables .	BTL-1	Remembering	CO2
14.	If the joint probability density function of X and Y is			CO2
	$f(x, y) = e^{-(x+y)}, x, y \ge 0$. Are X and Y independent ?	BTL-4	Analyzing	
15.	State any two properties of correlation coefficient	BTL-1	Remembering	CO2
16.	Write the angle between the regression lines	BTL-1	Remembering	CO2
17.	The regression equations are $x + 6y = 14$ and $2x + 3y = 1$. Evaluate the correlation coefficient between X & Y.	BTL-2	Understanding	CO2
18.	If $\overline{X} = 970$, $\overline{Y} = 18$, $\sigma_x = 38$, $\sigma_y = 2$ and $r = 0.6$, Devise the line of	BTL-2	Understanding	CO2
10	regression of X on Y.		I Indonaton din a	
19.	In a partially destroyed laboratory, record of an analysis of correlation data, the following results only are legible; Variance of		Understanding	CO2
	X = 9; Regression equations are $8X - 10Y + 66 = 0$ and $40X-18Y =$	BTL-2		002
	X = 9, Regression equations are $3X = 101 + 00 = 0$ and $40X = 101 = 214$. Find the mean values of X and Y?			
20.	The regression equations are $3x + 2y = 26$ and $6x + y = 31$. Find the		Understanding	CO2
20.	correlation coefficient.	BTL-2	Onderstanding	002
21.	Define Covariance.	BTL-1	Remembering	CO2
22.	Prove that $-1 \le r_{xy} \le 1$	BTL-2	Understanding	CO2
23.	The equations of two regression lines are $3x+2y=19$ and $3y+9x=46$.		Understanding	CO2
	Obtain the mean of X and Y.	BTL-2		
24.	The equations of two regression lines are $3x+2y=19$ and $3y+9x=46$.		D	
	Derive the correlation coefficient between X and Y.	BTL-1	Remembering	CO2
25.	Show that $[Cov(X, Y)]^2 \leq Var(X)Var(Y)$	BTL-2	Understanding	CO2
	PART B (16 Mark Questions)		•	
1.	From the following table for bivariate distribution of (X, Y). Find			
	(i) $P(X \le 1)$ (ii) $P(Y \le 3)$ (iii) $P(X \le 1)$			
	$1, Y \le 3$ (iv) $P(X \le 1/Y \le 3)$ (v) $P(Y \le 3/X \le 1)$			
	$(vi)P(X+Y\leq 4)$			
	Y			
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			
		BTL-3	Applying	GOA
	$0 0 0 \frac{1}{2} \frac{2}{3}$	DIL-3	Applying	CO2
	$\begin{bmatrix} 0 & 0 & 0 & \overline{32} & \overline{32} & \overline{32} & \overline{32} & \overline{32} \end{bmatrix}$			
	$\begin{vmatrix} 1 \\ -1 \\ -16 \end{vmatrix} = \frac{1}{16} \begin{vmatrix} \frac{1}{2} \\ -16 \\ -8 \end{vmatrix} = \frac{1}{8} \begin{vmatrix} \frac{1}{2} \\ -8 \\ -8 \\ -8 \end{vmatrix} = \frac{1}{8} \begin{vmatrix} \frac{1}{2} \\ -8 \\ -8 \\ -8 \\ -8 \\ -8 \\ -8 \\ -8 \\ -$			
	$\begin{vmatrix} 2 \\ -2 \\ -32 \end{vmatrix} = \frac{1}{32} \begin{vmatrix} \frac{1}{32} \\ -64 \end{vmatrix} = \frac{1}{64} \begin{vmatrix} \frac{1}{64} \\ -64 \end{vmatrix} = 0 = \frac{1}{64}$			
2.(a)	The two dimensional random variable (X, Y) has the joint probability			
	mass function $f(x, y) = \frac{x+2y}{27}$, $x = 0, 1, 2; y = 0, 1, 2$. Find the			0.00
	marginal distributions of X^{27} and Y. Also find the conditional	BTL-3	Applying	CO2
	distribution of Y given			
	X = 1 also find the conditional distribution of X given $Y = 1$.			
2.(b)	The joint pdf a bivariate $R.V(X, Y)$ is given by			CO2
	$f(x,y) = \begin{cases} Kxy &, 0 < x < 1, 0 < y < 1 \\ 0 &, otherwise \end{cases}$			
		BTL-3	Applying	
	(1) Find K. (2) Find $P(X+Y<1)$. (3) Are X and Y independent			
	R.V's.			
3.(a)	If the joint pdf of (X, Y) is given by $P(x, y) = K(2x+3y)$, x=0, 1, 2, 3,			
	y = 1, 2, 3 Find all the marginal probability distribution. Also find the probability distribution of X+Y.	BTL-3	Applying	CO2

3.(b)	The joint pdf of the RV (X,Y) is given by $f(x,y) = kxye^{-(x^2+y^2)}$,			CO2
	x > 0, y > 0. Find the value of k. Also prove that X and Y are independent	BTL-4	Analyzing	
4.	The following table represents the joint probability distribution of the discrete RV (X,Y). Find all the marginal and conditional distributions. $\begin{array}{c c c c c c c c c c c c c c c c c c c $	BTL-3	Applying	CO2
5.	Find the marginal distribution of X and Y and also $P(P(X \le 1, Y \le 1), P(X \le 1), P(Y \le 1))$. Check whether X and Y are independent. The joint probability mass function of X and Y is Y 0 1 2 X 0 0.10 0.04 0.02 1 0.08 0.20 0.06 0.06	BTL-3	Applying	CO2
6.	X $\frac{1}{8}$ $\frac{3}{8}$ 000 $\frac{1}{2}$ $\frac{2}{8}$ Find the correlation coefficient of X and Y from the above table.	BTL-4	Analyzing	CO2
7.	If the joint pdf of a two-dimensional $RV(X,Y)$ is given by $f(x,y) = \begin{cases} x^2 + \frac{xy}{3}; \ 0 < x < 1, \ 0 < y < 2 \\ 0, \ elsewhere \end{cases}$ (ii) $P(Y < \frac{1}{2}, X < \frac{1}{2})$ (iii) $P\left(Y < \frac{1}{2} / X < \frac{1}{2}\right)$	BTL-3	Applying	CO2
8.	The joint pdf of a two dimensional random variable (X, Y) is given by $f(x, y) = xy^2 + \frac{x^2}{8}, 0 \le x \le 2, 0 \le y \le 1. \text{ Compute}$ $(i) P\left(X > 1 / Y < \frac{1}{2}\right) (ii) P\left(Y < \frac{1}{2} / X > 1\right) (iii) P(X + Y) \le 1.$	BTL-3	Applying	CO2
9.	(b)The joint pdf of X and Y is given by $ \begin{array}{l} \text{(b)The joint pdf of X and Y is given by} \\ \text{f}(x,y) = \begin{cases} kx(x-y), 0 < x < 2, -x < y < x \\ 0, & otherwise \end{cases} \\ \text{(i)Find K (ii) Find } f_x(x) \text{ and } f_y(y) \end{array} $	BTL-3	Applying	CO2
10.	Find the Coefficient of Correlation between industrial production and export using the following tableProduction (X)1417232125Export (Y)1012152023	BTL-3	Understanding	CO2

11.Find the correlation coefficient for the following heights of fathers X,their sons Y and also find the equations of regression lines. Hence find the height of son when the height of father is 71BTL-3Applyin X 6566676768697072Y6768656872726971The second se	
find the height of son when the height of father is 71 BTL-3 Applyin X 65 66 67 67 68 69 70 72 72 72 72 72 71 BTL-3 Applyin 12. Obtain the lines of regression X 50 55 50 60 65 65 60 60 60 71 BTL-3 Applyin 12. Obtain the lines of regression X 50 55 50 60 65 65 60 60 60 71 BTL-3 Applyin 13. If $f(x,y) = \frac{6-x-y}{8}$, $0 \le x \le 2$, $2 \le y \le 4$ for a bivariate random variable (X,Y), Evaluate the correlation coefficient ρ . BTL-4 Analyzin	
X 65 66 67 67 68 69 70 72 Y 67 68 65 68 72 72 69 71 71 71 71 71 71 72 72 71 72 72 72 72 72 72 71 72 <td< td=""><td></td></td<>	
12.Obtain the lines of regressionBTL-3BTL-3Applyin13.If $f(x,y) = \frac{6-x-y}{8}$, $0 \le x \le 2$, $2 \le y \le 4$ for a bivariate randomBTL-4Analyzin13.If $f(x,y) = \frac{6-x-y}{8}$, $0 \le x \le 2$, $2 \le y \le 4$ for a bivariate randomBTL-4Analyzin	lg CO2
X 50 55 50 60 65 65 65 60 60	lg CO2
Y11141316161515141311141313.If $f(x,y) = \frac{6-x-y}{8}$, $0 \le x \le 2$, $2 \le y \le 4$ for a bivariate random variable (X,Y), Evaluate the correlation coefficient ρ .BTL-4Analyzin	lg CO2
13.If $f(x,y) = \frac{6-x-y}{8}$, $0 \le x \le 2$, $2 \le y \le 4$ for a bivariate random variable (X,Y), Evaluate the correlation coefficient ρ .BTL-4Analyzin	0
$ II f(x,y) = \frac{1}{8}, \ 0 \le x \le 2, \ , \ 2 \le y \le 4 $ for a bivariate random BTL-4 Analyzin variable (X,Y), Evaluate the correlation coefficient ρ .	
variable (X,Y), Evaluate the correlation coefficient ρ .DIL 1	COD
	ng CO2
$f(x, y) = x + y, 0 \le x \le 1, 0 \le y \le 1.$ BTL-4 Analyzi	ng CO2
Evaluate the Correlation coefficient between X and Y.	
15. Three balls are drawn at random without replacement from a box	
containing 2 white 3 red and 4 blue balls. If \mathbf{X} denotes the number of	CO2
white balls drawn and Y denotes the number of red balls drawn, Find BTL-3 Applyin	ıg
the probability distribution of X and Y.	
16. The two regression lines are $4x-5y+33=0$ and $20x-9y=107$. Find the BTL-3 Applyin	CO2
mean of X and Y. Also find the correlation coefficient between them	lg
17. Out of the two lines of regression given by $x + 2y - 5 = 0$ and	CO2
2x + 3y - 8 = 0, which one is the regression line of X on Y? BTL-4 Analyzi	nσ
Analyze the equations to find the means of X and Y. If the variance	18
of X is 12, find the variance of Y. SRM	
18. From the following data, Find (i) The two regression equations (ii)	
The coefficient of correlation between the marks in Mathematics and	
Statistics (iii) The most likely marks in Statistics when marks in BTL-4 Analyzi	ng CO2
Mathematics are 30	C
Marks in Maths : 25 28 35 32 31 36 29 38 34 32 Marks in Statistics: 43 46 49 41 36 32 31 30 33 39	
Marks in Statistics. 45 40 49 41 50 52 51 50 55 59	
UNIT-II RANDOM PROCESSES 61	COS
Classification – Stationary process – Markov process – Poisson process	
PART-A(2 Mark Questions)	
1. What are the four types of a stochastic process? BTL-1 Remember	ering CO3
2. Define Discrete Random sequence with example. BTL-1 Remember	ering CO3
3.Define Discrete Random Process with example.BTL-1Remember	ering CO3
4. Define Continuous Random sequence with example. BTL-1 Remember	ering CO3
5. Define Continuous Random Process with example. BTL-1 Remember	ering CO3
6. Define wide sense stationary process. BTL-1 Remember	0
7. Define Strict Sense Stationary Process. BTL-1 Remember	0
8. Define first order stationary Process BTL-1 Understan	U
9. Define second order stationary Process BTL-1 Understan	U
10. Define stationary process BTL-1 Remember	0
11. Define Markov Process BTL-1 Remember	ering CO3
12. Show that the random process $X(t) = A\cos(\omega_c t + \theta)$ is not stationary	
Show that the random process $A(i) = A\cos(\omega_c i + b)$ is not stationary	\dots $1 CO2$
if it is assumed that A and ω_c are constants and θ is a uniformly BTL-2 Understan	ding CO3
	ding COS
if it is assumed that A and ω_c are constants and θ is a uniformly BTL-2 Understan	

	deviations. Find the mean of the process.			
14.	Consider the random process $X(t) = cos(t + \phi)$, where ϕ is uniform			
	random variable in $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. Check whether the process is	BTL-2	Understanding	CO3
		DIL 2	Childerstanding	
15.	stationary. Consider the random process X (t) = $cos (\omega_0 t + \theta)$, where θ is			
15.	uniform random variable in $(-\pi,\pi)$. Check whether the process is	BTL-2	Understanding	CO3
	stationary or not	DILZ	enderstanding	005
16.	Define Poisson process.	BTL-1	Remembering	CO3
17.	State and two properties of Poisson process.	BTL-1	Remembering	CO3
18.	Compute the mean value of the random process whose auto		TT 1 . 1	
	correlation function is given by $R_{XX}(\tau) = 25 + \frac{4}{1+6\tau^2}$.	BTL-2	Understanding	CO3
19.	A random process has the autocorrelation function $R_{xx}(\tau) = \frac{4\tau^2 + 6}{\tau^2 + 1}$,		TT 1 . 1	
	find the mean square value of the problem. $T_{\chi\chi}(\tau) = \tau^{2+1}$,	BTL-2	Understanding	CO3
20.	Define Markov chain	BTL-1	Remembering	CO3
21.	State Chapman- Kolmogorov theorem	BTL-1	Remembering	CO3
22.	Consider the Markov chain with 2 states and transition probability			
	$\begin{bmatrix} \underline{3} & \underline{1} \end{bmatrix}$		TT 1 / 1	
	matrix $P = \begin{bmatrix} 4 & 4 \\ 1 & 1 \end{bmatrix}$. Find the stationary probabilities of the chain.	BTL-2	Understanding	CO3
	matrix $P = \begin{bmatrix} \frac{3}{4} & \frac{1}{4} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}$. Find the stationary probabilities of the chain.			
23.	The one-step transition probability matrix of a Markov chain with			
	states (0,1) is given by $P = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ Evaluate whether it is			
	states (0,1) is given by $P = \begin{bmatrix} 1 & 0 \end{bmatrix}$ Evaluate whether it is	BTL-2	Understanding	CO3
	irreducible Markov chain?			
24.	Obtain the transition matrix of the following transition diagram.			
	0.5			
				~ ~ ~
		BTL-2	Understanding	CO3
	0.5			
25.	Check whether the Markov chain with transition probability matrix			
	$P = \begin{bmatrix} 0 & 1 & 0 \\ 1/2 & 0 & 1/2 \end{bmatrix}$ is irreducible or not?	BTL-2	Understanding	CO3
	$P = \begin{bmatrix} 1/2 & 0 & 1/2 \end{bmatrix}$ is irreducible or not?		8	
	PART-B (16 Mark Questions)			
1.	The process $\{X(t)\}$ whose probability distribution under certain			
	$\frac{(u)}{(u-1)^{n+1}}, n=1,2$			
	conditions is given by $P\{X(t) = n\} = \begin{cases} (1+at)^{n+1} & \text{Show that} \end{cases}$	BTL-3	Applying	CO3
	conditions is given by $P\{X(t) = n\} = \begin{cases} \frac{(at)^{n-1}}{(1+at)^{n+1}}, n = 1, 2\\ \frac{at}{(1+at)}, n = 0 \end{cases}$ Show that			
2.(a)	it is not stationary. Show that the random process $Y(t) = A \sin(\omega t + \theta)$ is wide sense.			
2.(a)	Show that the random process $X(t) = A \sin(\omega t + \theta)$ is wide-sense stationary process where A and ω are constants and θ is uniformly	BTL-3	Applying	CO3
	stationary process where A and ω are constants and θ is uniformly distributed in (0, 2π).	DIL-3	Thhime	
2.(b)	Find the mean and autocorrelation of the Poisson processes	BTL-4	Analyzing	CO3
	Given that the random process $X(t) = cos(t + \varphi)$ where φ is a			2.50

	random variable with density function $f(x) = \frac{1}{\pi}, \frac{-\pi}{2} < \varphi < \frac{\pi}{2}$.Discuss whether the process is stationary or not	BTL-3	Applying	CO3
3.(b)	A student's study habits are as follows: If he studies one night, he is 70% sure not to study next night. On the other hand, if he does not study one night, he is 60% sure not to study the next nights as well. In the long run how often does he study?	BTL-3	Applying	CO3
4.(a)	Consider a random process $X(t) = B \cos (50 t + \Phi)$ where B and Φ are independent random variables. B is a random variable with mean 0 and variance 1. Φ is uniformly distributed in the interval $[-\pi,\pi]$. Determine the mean and auto correlation of the process.	BTL-3	Applying	CO3
4.(b)	Prove that the difference of two independent Poisson process is not a Poisson process.	BTL-3	Applying	CO3
5.(a)	Show that the random process $X(t) = A \cos(\omega t + \theta))$ is wide sense stationary, if A and ω are constant and θ is a uniformly distributed random variable in $(0, 2\pi)$.	BTL3	Applying	CO3
5.(b)	Prove that the sum of two independent Poisson process is a Poisson process.	BTL4	Analyzing	CO3
6.(a)	Show that the random process $X(t) = A\cos(\omega t + \theta)$ is not stationary if A and ω are constants and θ is uniformly distributed random variable in $(0, \pi)$.	BTL-3	Applying	CO3
6.(b)	Prove that the inter arrival time of the Poisson process follows exponential distribution	BTL-3	Applying	CO3
7.	Show that the random process $X(t) = A\cos\omega t + B\sin\omega t$ is wide sense stationary process if A and B are random variables such that $E(A) = E(B) = 0, E(A^2) = E(B^2)$ and $E(AB) = 0$	BTL-3	Applying	CO3
8.	A salesman's territory consists of three regions A, B, C. He never sells in the same region on successive days. If he sells in region A, then the next day he sells in B. However, if he sells either B or C, then the next day he is twice as likely to sell in A as in the other region. Explain How often does he sell in each of the regions in the steady state?	BTL-3	Applying	CO3
9.(a)	If the process $X(t) = P + Qt$, where P and Q are independent random variables with $E(P) = p, E(Q) = q, Var(P) = \sigma_1^2, Var(Q) = \sigma_2^2$, find $E(X(t)), R(t_1, t_2)$. Is the process $\{X(t)\}$ stationary?	BTL-3	Applying	CO3
9.(b)	The probability of a dry day following a rainy day is 1/3 and that the probability of a rainy day following a dry day is ¹ / ₂ . Given that May 1 st is a dry day. Obtain the probability that May 3 rd is a dry day also May 5 th is a dry day.	BTL-3	Applying	CO3
10.(a)	Suppose that customers arrive at a bank according to a Poisson process with a mean rate of per minute; Discuss the probability that during a time interval of 2 minutes (a) exactly 4 customers arrive, and (b) more than 4 customers arrive.	BTL-4	Analyzing	CO3
10.(b)	If customers arrive at a counter in accordance with a Poisson process with a mean rate of 2 per minute, Evaluate the probability that the interval between 2 consecutive arrivals is (a) more than 1 minute, (b) between 1 minute and 2 minutes and (c) 4 minutes or less	BTL-4	Analyzing	CO3
11.	Consider the random process $Y(t) = X(t)cos(\omega_0 t + \theta)$, where $X(t)$ is wide sense stationary process, θ is a Uniformly distributed R.V. over $(-\pi, \pi)$ and ω_0 is a constant. It is assumed that $X(t)$ and θ are independent. Show that $Y(t)$ is a wide sense stationary	BTL-3	Applying	CO3

12.The transition probability of a barrier of a barrier of the field o	10	The transition methodility metric of a Markov shair (V) a 122			
ii) $P(X_3 = 2, X_2 = 3, X_1 = 3, X_0 = 2)$ Iii)Consider the Markov chain $\{X_n, n = 0, 1, 2, 3,,\}$ having 3 states space S={1,2,3} and one step TPM $P = \begin{bmatrix} 0 & 1 & 0 \\ 1/2 & 0 & 1/2 \\ 0 & 1 & 0 \end{bmatrix}$ and initial probability distribution $P(X_0=i)=1/3$, $i=1,2,3$. Compute (1) $P(X_3=2, X_{3}=1,X_{3}=2,X_{0}=1)$ (2) $P(X_3=2, X_{2}=1,X_{3}=2,X_{0}=1)$ (3) $P(X_3=2,X_{0}=1,X_{1}=2,X_{0}=1)$ (4) Invariant Probability so f the Markov Chain.BTL-3Applying PC(X_1=2,X_{0}=1,X_{1}=2,X_{0}=1) (3) $P(X_3=2,X_{0}=1)$ (1) the probability that he drives to work in the long run.BTL-3Applying CO3CO315.Three polys A, B and C are throwing a ball to each other. A always throws the ball to B and B always throws the ball to C are throwing a ball to each other. A always throws the ball to B and B always throws the ball to C are throwing a ball to each other. A always throws the ball to B and B always throws the ball to C are throwing a ball to each other. A always throws the ball to B and B always throws the ball to C are throwing a ball to each other. A always throws the ball to B and B always throws the ball to C but C is just as likely to throw the ball to B as to A. Show that the process is Markovian. Find the transition probability matrix and classify the statesBTL-4AnalyzingCO316.Consider a Markov chain chain $\{X_n, n = 0, 1, 2,\}$ having states spaceBTL-4AnalyzingCO317.Classify the states of the Markov chain for the one-step transition probability matrix $P = \begin{pmatrix} 0 & 1 & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} \end{pmatrix}$ with state space $S = \{1,2,3\}$ $O = 1 & 0 \\ 0 & 1 & 0 \end{pmatrix}$. Show that the chain irreducible. Find $STL-4$ AnalyzingCO318.Consider a Markov chain on $(0, 1, 2)$ having the transition matrix<	12.	having 3 states 1,2 and 3 is $P = \begin{bmatrix} 0.6 & 0.2 & 0.2 \\ 0.3 & 0.4 & 0.3 \end{bmatrix}$ and the initial distribution is	BTL-3	Applying	CO3
13.Consider the Markov chain $\{X_n, n=0, 1, 2, 3,\}$ having 3 states space S={1,2,3} and one step TPM $P = \begin{bmatrix} 0 & 1 & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} \\ 0 & 1 & 0 \end{bmatrix}$ and initial or 1 & 0 BTL-3ApplyingCO313.probability distribution $P(X_0=i)=1/3$, $i=1,2,3$. Compute (1) $P(X_3=2, X_2=1, X_1=2, X_0=1)$ (2) $P(X_3=2, X_2=1, X_1=2, X_0=1)$ (3) $P(X_3=2, X_2=1, X_1=2, X_0=1)$ (4) Invariant Probabilities of the Markov Chain.BTL-3ApplyingCO314.A man either drives a car or catches a train to go to office each day. He next day he is just as likely to drive again as he is to travel by train. Now suppose that on the first day of the week, the man tossed a fair die and drove to work if and only if 6 appeared. Find (i) the probability that he takes a train on the third day (ii) the probability that he drives to work in the long runBTL-3ApplyingCO315.Three boys A, B and C are throwing a ball to each other. A always throws the ball to B and B always throws the ball to C but C is just as likely to drive the ball to B as to A. Show that the process is Markovian. Find the transition probability matrix and classify the statesBTL-4AnalyzingCO316.Consider a Markov chain chain $\{X_{1n}, n=0, 1, 2,\}$ having states spaceBTL-4AnalyzingCO317.Classify the states of the Markov chain for the one-step transition probability matrix $P = \left(\frac{1}{2}, 0, \frac{1}{2}\right)$ with state space $S = \{1,2,3\}$ BTL-4AnalyzingCO318.Consider a Markov chain on $(0, 1, 2)$ having the transition matrix given by $P = \left(\frac{1}{2}, 0, \frac{1}{2}\right)$. Show that the chain is irreducible. Find $\frac{1}{2}, \frac{1}{2}, 0$. Show that the chain is irreducible. Find 					
14.A man either drives a car or catches a train to go to office each day. He never goes 2 days in a row by train but if he drives one day, then the next day he is just as likely to drive again as he is to travel by train. Now suppose that on the first day of the week, the man tossed a fair die and drove to work if and only if 6 appeared. Find (i) the probability that he drives to work in the long runBTL-3ApplyingCO315.Three boys A, B and C are throwing a ball to each other. A always throws the ball to B and B always throws the ball to C but C is just as likely to throw the ball to B as to A. Show that the process is Markovian. Find the transition probability matrix and classify the statesBTL-4AnalyzingCO316.Consider a Markov chain chain {Xn, n= 0, 1, 2,} having states spaceBTL-4AnalyzingCO3(1) Draw a transition diagram, probability matrix P = $\begin{pmatrix} 0 & 1 & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} \end{pmatrix}$ with state space S = {1,2,3}BTL-4AnalyzingCO318.Consider a Markov chain on (0, 1, 2) having the transition matrix given by $P = \begin{pmatrix} 0 & 0 & 1 \\ 0 & \frac{1}{2} & 0 \\ \frac{1}{2} & 0 \end{pmatrix}$. Show that the chain is irreducible. Find by by $P = \begin{pmatrix} 0 & 1 \\ 0 & \frac{1}{2} & \frac{1}{2} \\ 0 & \frac{1}{2} & 0 \end{pmatrix}$. Show that the chain is irreducible. Find by the state distribution.CO3	13.	Consider the Markov chain {X _n , n= 0, 1, 2,3} having 3 states space S={1,2,3} and one step TPM $P = \begin{bmatrix} 0 & 1 & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} \\ 0 & 1 & 0 \end{bmatrix}$ and initial probability distribution P(X ₀ =i)=1/3, i= 1,2,3. Compute (1) P(X ₃ =2. X ₂ =1,X ₁ =2,X ₀ =1) (2) P(X ₃ =2, X ₂ =1,X ₁ =2,X ₀ =1)	BTL-3	Applying	CO3
throws the ball to B and B always throws the ball to C but C is just as likely to throw the ball to B as to A. Show that the process is Markovian. Find the transition probability matrix and classify the statesBTL-4AnalyzingCO316.Consider a Markov chain chain $\{X_n, n=0, 1, 2, \dots\}$ having states spaceS={ 1,2} and one step TPM $P = \begin{bmatrix} \frac{4}{10} & \frac{6}{10} \\ \frac{8}{10} & \frac{2}{10} \end{bmatrix}$.BTL-4AnalyzingCO3(1) Draw a transition diagram, (3) Is the state -1 ergodic? Explain. Explain(2) Is the chain irreducible? (3) Is the state of the Markov chain for the one-step transition probability matrix $P = \begin{pmatrix} 0 & 1 & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} \\ 0 & 1 & 0 \end{pmatrix}$ with state space S = {1,2,3}BTL-4AnalyzingCO318.Consider a Markov chain on (0, 1, 2) having the transition matrix given by $P = \begin{pmatrix} 0 & 0 & 1 \\ \frac{1}{2} & 0 \\ \frac{1}{2} & 0 \end{pmatrix}$. Show that the chain is irreducible. Find the steady state distribution.CO3	14.	A man either drives a car or catches a train to go to office each day. He never goes 2 days in a row by train but if he drives one day, then the next day he is just as likely to drive again as he is to travel by train. Now suppose that on the first day of the week, the man tossed a fair die and drove to work if and only if 6 appeared. Find (i) the probability that he takes a train on the third day (ii) the probability that he drives to work in the long run	BTL-3	Applying	CO3
space $S = \{ 1,2 \} \text{ and one step TPM } P = \begin{bmatrix} \frac{4}{10} & \frac{6}{10} \\ \frac{8}{10} & \frac{2}{10} \end{bmatrix}.$ (1) Draw a transition diagram, (2) Is the chain irreducible? (3) Is the state -1 ergodic? Explain. (4) Is the chain ergodic? Explain (5) Explain (4) Is the chain ergodic? Explain (6) I 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0	15.	throws the ball to B and B always throws the ball to C but C is just as likely to throw the ball to B as to A . Show that the process is Markovian. Find the transition probability matrix and classify the	BTL-4	Analyzing	CO3
17.Classify the states of the Markov chain for the one-step transition probability matrix $P = \begin{pmatrix} 0 & 1 & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} \\ 0 & 1 & 0 \end{pmatrix}$ with state space $S = \{1, 2, 3\}$ BTL-4AnalyzingCO318.Consider a Markov chain on $(0, 1, 2)$ having the transition matrix given by $P = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ \frac{1}{2} & \frac{1}{2} & 0 \end{pmatrix}$. Show that the chain is irreducible. Find the steady state distribution.BTL-4AnalyzingCO3	16.	space $S=\{1,2\} \text{ and one step TPM } P = \begin{bmatrix} \frac{4}{10} & \frac{6}{10} \\ \frac{8}{10} & \frac{2}{10} \end{bmatrix}.$ (1) Draw a transition diagram, (3) Is the state -1 ergodic? Explain. (4) Is the chain ergodic?	BTL-4	Analyzing	CO3
18. Consider a Markov chain on (0, 1, 2) having the transition matrix given by $P = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ \frac{1}{2} & \frac{1}{2} & 0 \end{pmatrix}$. Show that the chain is irreducible. Find BTL-4 Analyzing CO3 the steady state distribution.	17.	Classify the states of the Markov chain for the one-step transition probability matrix $P = \begin{pmatrix} 0 & 1 & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} \\ 0 & 1 & 0 \end{pmatrix}$ with state space S = {1,2,3}	BTL-4	Analyzing	CO3
UNIT IV- CORRELATION AND SPECTRAL DENSITIES6LCOs	18.	Consider a Markov chain on (0, 1, 2) having the transition matrix given by $P = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ \frac{1}{2} & \frac{1}{2} & 0 \end{pmatrix}$. Show that the chain is irreducible. Find	BTL-4	Analyzing	CO3
	UNIT	IV- CORRELATION AND SPECTRAL DENSITIES		6L	COs

	PART-A(2 Mark Questions)			
1	1	DTI 1	Demonstrations	CO4
1.	Define autocorrelation function .	BTL -1	Remembering	
2.	Define Cross correlation function	BTL -1	Remembering	CO4
3.	State any two properties of an auto correlation function.	BTL -1	Remembering	CO4
4. 5.	State any twos properties of cross correlation functionGive an example of cross – spectral density.	BTL -1 BTL -1	Remembering Remembering	CO4 CO4
6.	State and prove any one of the properties of cross – spectral density function.	BTL -1	Remembering	CO4
7.	Estimate the variance of the stationary process { X (t)} whose auto correlation function is given by $R(\tau) = 2+4 e^{-2\lambda \tau }$	BTL -2	Understanding	CO4
8.	Estimate the variance of the stationary process $\{X(t)\}$, whose auto correlation function is given by $Rxx(\tau) = 16 + (\frac{9}{1+6\tau^2})$.	BTL -2	Understanding	CO4
9.	Given that the autocorrelation function for a stationary ergodic process with no periodic components $isRxx(\tau) = 25 + (\frac{4}{1+6\tau^2})$. Estimate the mean and variance of the process {X(t)}.	BTL -2	Understanding	CO4
10.	Prove that $R_{xy}(\tau) = R_{yx}(-\tau)$.	BTL -1	Remembering	CO4
11.	The random process X(t) has an autocorrelation function $R_{xx}(\tau) = 18 + \frac{2}{6 + \tau^2}$ Calculate E(X(t)) and E(X ² (t)).	BTL -1	Remembering	CO4
12.	If a random process $X(t)$ is defined as $X(t) = \begin{cases} A, 0 \le t \le 1\\ 0, otherwise \end{cases}$ where A is a r.v uniformly distributed from $-\theta$ to θ . P.T the autocorrelation function of $X(t)$ is $\frac{\theta^2}{3}$.	BTL -1	Remembering	CO4
13.	Check whether $\frac{1}{1+9\tau^2}$ is a valid auto correlation function of a random process.	BTL -2	Understanding	CO4
14.	If $R(\tau) = e^{-2\lambda \tau }$ is the auto correlation function of a random process $\{X(t)\}$. Point out the spectral density of $\{X(t)\}$.	BTL -2	Understanding	CO4
15.	The autocorrelation function of the random telegraph signal process is given by $R_{xx}(\tau) = a^2 e^{-2 r \tau }$. Point out the power density spectrum of the random telegraph signal.	BTL -2	Understanding	CO4
16.	Point out the auto correlation function whose spectral density is $S(\omega) = \begin{cases} \pi, & \omega \le 1\\ 0, otherwise \end{cases}$	BTL -2	Understanding	CO4
17.	Evaluate the power spectral density of a random signal with autocorrelation function $e^{\lambda \tau }$.	BTL -2	Understanding	CO4
18.	Check whether $R_{xx}(\tau) = \tau^3 + \tau^2$ is valid auto correlation function of a random process.	BTL -2	Understanding	CO4
19.	Given the power spectral density: $Sxx(\omega) = (\frac{1}{4+\omega^2})$ formulate the average power of the process.	BTL -2	Understanding	CO4
20.	Find the mean square value of the random process whose autocorrelation is $\frac{A^2}{2}\cos\omega\tau$	BTL -2	Understanding	CO4
21.	Define spectral density.	BTL -1	Remembering	CO4

				1
22.	Find the mean of a stationary random process whose auto correlation function is given by $R_{XX}(\tau) = 18 + \frac{2}{6+\tau^2}$.	BTL -1	Remembering	CO4
23.	State Wienar-Khinchine relation	BTL -1	Remembering	CO4
24.	Find the mean of a stationary random process whose auto correlation function is given by $R_{(Z)} = \frac{25Z^2 + 36}{6.25Z^2 + 4}$	BTL -1	Remembering	CO4
25.	Find the auto correlation function whose spectral density is $S_{XX}(\omega) = \begin{cases} 1, & \omega < \omega_0 \\ 0, & elsewhere \end{cases}$	BTL -2	Understanding	CO4
	PART-B (16 Mark Questions)			
1.	Find the power spectral density of a WSS process with autocorrelation function $R(\tau) = e^{-\sigma\tau^2}$	BTL -3	Applying	CO4
2.	Identify the power spectral density of a random binary transmission process where auto correlation function is $R(\tau) = 1 - \frac{ \tau }{T}$; $ \tau \le T$.	BTL -3	Applying	CO4
3.	If the power spectral density of a continuous process is $S_{\chi\chi}(\omega) = \frac{\omega^2 + 9}{\omega^4 + 5\omega^2 + 4}$, Give the mean value, mean- square value of the process.	BTL -4	Analyzing	CO4
4.	The power spectrum of a wide sense stationary process X(t) is given $S_{xx}(\omega) = \frac{1}{(1+\omega^2)^2}$. Calculate the auto correlation function. by	BTL -4	Analyzing	CO4
5.	Find the auto correlation function of the process {X(t)}, if its power spectral density is given by $S(\omega) = \begin{cases} 1 + \omega^2, for \omega \le 1\\ 0, for & \omega \ge 1 \end{cases}$	BTL -4	Analyzing	CO4
6.	A random process $\{X(t)\}$ is given by $X(t) = Acospt + B sinpt$, where A and B are independent RV's such that $E(A)=E(B)=0$ and $E(A^2) = E(B^2) = \sigma^2$. Calculate the power spectral density of the process.	BTL -3	Applying	CO4
7.	Find the mean-square value of the Processes whose power spectral density is $\frac{\omega^2+2}{\omega^4+13\omega^2+36}$.	BTL -3	Applying	CO4
8.	If the power spectral density of a WSS process is given by $S(\omega) = \begin{cases} \frac{b}{a}(a - \omega), \omega \le a \\ 0, & \omega > a \end{cases}$ Evaluate auto correlation function	BTL -4	Analyzing	CO4
9.	Consider the random process $X(t) = Y\cos\omega t$, $t \ge 0$, where ω is a constant and Y is a uniform random variable over (0,1) Find the auto correlation function $R_{xx}(t, s)$ of $X(t)$ and auto covariance $C_{xx}(t, s)$ of $X(t)$.	BTL -4	Analyzing	CO4
10.	Consider two random processes $X(t) = 3 \cos(\omega t + \theta)$ and $Y(t) = 2 \cos(\omega t + \theta - \pi/2)$ where θ is a random variable uniformly distributed in $(0, 2\pi)$. Prove that $\sqrt{R_{xx}(0)R_{yy}(0)} \ge R_{xy}(\tau) $.	BTL -3	Applying	CO4
11.	Show that the Random Process $X(t) = A \sin(\omega t + \phi)$, where A and ω are constants, ϕ is a Random variable uniformly distributed in $(0, 2\pi)$. Find the autocorrelation function of the process.	BTL -3	Applying	CO4
12.	If the autocorrelation function of X(t) is $R_{XX}(\tau) = Ae^{-\alpha \tau } \cos(\omega_0 \tau)$) where $A > 0, \alpha > 0$ and ω_0 are constants. Find the power spectrum of X(t)	BTL -4	Analyzing	CO4

	Find the power spectral density function whose auto correlation			
13.	function is given by $R_{XX}(\tau) = \frac{A^2}{2}\cos(\omega_0\tau)$.	BTL -3	Applying	CO4
14.	The auto correlation function for a stationary process is given by $R_{XX}(\tau) = 9 + 2e^{- \tau }$. Find the mean value of the random variable $Y = \int_0^2 X(t) dt$ and the variance of $X(t)$.	BTL -4	Evaluating	CO4
15.	Estimate the power spectral density of the random process, if its auto correlation function is given by $R_{xx}(T) = e^{-\alpha \tau^2} cos w_0 \tau$.	BTL -4	Analyzing	CO4
16.	If $Y(t) = X(t + a) - X(t - a)$, Examine $R_{YY}(\tau) = 2R_{XX}(\tau) - R_{XX}(\tau + 2a) - R_{XX}(\tau - 2a)$. Hence examine $S_{YY}(\omega) = 4sin^2 a \omega S_{XX}(\omega)$.	BTL -4	Analyzing	CO4
17.	Given the power density spectrum $S_{XX}(\omega) = \frac{157+12 \omega^2}{(\omega^2+16)(\omega^2+9)}$. Find the auto correlation function.	BTL -3	Applying	CO4
18.	Consider a random process X (t) = B $\cos(50t + \varphi)$ where B and φ are independent random variables. B is a random variable with mean 0 and variance 1. φ is uniformly distributed in the interval ($-\pi$, π).Find mean andauto correlation of the process.	BTL -4	Analyzing	CO4
UNIT	V- LINEAR SYSTEM WITH RANDOM INPUTS		6L	
Linear	time invariant system-System transfer function-Auto correlation and cro	oss correla	tion functions of	COS
	and output.			
1	PART-A (2 Mark Questions)			
1.	Define a linear system with random input	BTL -1	Remembering	CO5
2.	Define White Noise.	BTL -1	Remembering	CO5
3.	Define Band –Limited white noise.	BTL -1	Remembering	CO5
4.	Define system weighting function.	BTL -1	Remembering	CO5
5.	Define a system when is it called memory less system.	BTL -1	Remembering	CO5
6.	Define stable system.	BTL -1	Remembering	CO5
7.	Give an example for a linear system.	BTL -2	Understanding	CO5
8.	Check whether the system $y(t)=x^3(t)$ is a linear or not.	BTL -2	Understanding	CO5
9.	Give the properties of a linear system.	BTL -2	Understanding	CO5
10.	Give the relation between input and output of a linear time invariant system.	BTL -2	Understanding	CO5
11.	Show that $Y(t) = t X(t)$ is linear.	BTL -2	Understanding	CO5
12.	Find the autocorrelation function of the white noise.	BTL -2	Understanding	CO5
13.	Prove that the mean of the output process is the convolution of the mean of the input process and the impulse response.	BTL -2	Applying	CO5
14.	If {X (t)}& {Y(t) } in the system Y(t) = $\int_{-\infty}^{\infty} h(u)X(t-u)du$ are WSS process explain how the auto correlation function related.	BTL -2	Understanding	CO5
15.	Define a system when is it called linear system?	BTL -1	Remembering	CO5
16.	If the input of a linear filter is a Gaussian random process, comment about the output random process.	BTL -2	Understanding	CO5
17.	Assume that the input X(t) to a linear time-invariant system is white noise. What is the power spectral density of the output process Y(t) if the system response H(ω) = $\begin{cases} 1, \omega_1 < \omega < \omega_2 \\ 0, otherweise \end{cases}$ is given?	BTL -2	Understanding	CO5
18.	Evaluate the system Transfer function ,if a Linear Time Invariant	BTL -2	Understanding	CO5

	system has an impulse function $H(t) = \begin{cases} \frac{1}{2c} t \le c \\ 0 t > c \end{cases}$			
19.	State any two properties of cross power density spectrum.	BTL -2	Understanding	CO5
20.	What is unit impulse response of a system? Why is it so called?	BTL -2	Understanding	CO5
21.	State the convolution form of the output of linear time invariant	BTL -1	Remembering	CO5
- 22	system.			005
22.	Write a note on noise in communication system.	BTL -1	Remembering	CO5
23.	Define (a) Thermal Noise (b) White Noise.	BTL -1	Remembering	CO5
24.	If the system function of a convolution type of linear system is given by $H(t) = \begin{cases} \frac{1}{2a}, t \le a\\ 0, t \ge a \end{cases}$, find the relation between power spectrum density	BTL -2	Understanding	CO5
	function of the input and output processes.			
25.	Check whether $\frac{1}{9 + \tau^2}$ is a valid autocorrelation function of a random process.	BTL -2	Understanding	CO5
	PART-B (16 Mark Questions)			
1.	(a) If the input to a time- invariant, stable linear system is a WSS			
1.	process. prove that the output will also be a WSS process.			
	(b) A circuit has an impulse response given by $h(t) = \left\{\frac{1}{T}; 0 \le t \le T\right\}$.	BTL -3	Applying	CO5
	Express $S_{YY}(\omega)$ in terms of $S_{xx}(\omega)$.	212 0		
2.(a)	Identify the output power density spectrum and output correlation			
	function for a system $h(t) = e^{-t}$, $t \ge 0$, for an input power density	BTL -3	Applying	CO5
	system $\frac{h_0}{2}$, $-\infty < f < \infty$.			
2.(b)	Let $Y(t) = X(t) + N(t)$ be a wide sense stationary process where $X(t)$ is the actual signal and $N(t)$ is the aero mean noise process with variance σ_N^2 , and independent of $X(t)$. Estimate the power spectral density of $Y(t)$.	BTL -3	Applying	CO5
3.	(a)A random process X(t) with $R_{xx}(\tau) = e^{-2 \tau }$ is the input to a linear system whose impulse response is $h(t) = 2e^{-t}$, $t > 0$. Identify the cross correlation coefficient $R_{xy}(\tau)$ between the input process X(t) and output process Y(t).	BTL -3	Applying	CO5
	(b)Show that $S_{yy}(\omega) = H(\omega) ^2 S_{xx}(\omega)$ where $S_{xx}(\omega)$ and $S_{yy}(\omega)$ are the power spectral density functions of the input X(t), output Y(t) and H(ω) is the system transfer function.	BTL -3	Applying	CO5
4.	(a)A system has an impulse response $h(t) = e^{-\beta t} U(t)$, Express the p.s.d. of the output Y(t) corresponding to the input X(t).	BTL -3	Applying	CO5
	(b)Assume a random process X(t) is given as input to a system with transfer function $H(\omega) = 1$ for $-\omega_0 < \omega < \omega_0$. If the autocorrelation function of the input process is $\frac{N_0}{2}\delta(\tau)$, Point out the autocorrelation function of the output process.	BTL -4	Analyzing	CO5
5.	Let X(t) be a stationary process with mean 0 and autocorrelation function $e^{-2 \tau }$. If X(t) is the input to a linear system and Y(t) is the output process, Calculate (i) E[Y(t)] (ii) S _{YY} (ω) and (iii) R _{YY} ($ \tau $), if the system function $H(\omega) = \frac{1}{\omega + 2i}$.	BTL -3	Applying	CO5

6	A readom are seen $\mathbf{V}(t)$ having the system completion function			
6.	A random process X(t) having the auto correlation function $R_{XX}(\tau) = \rho e^{-\alpha \tau }$, where ρ and α are positive constants is applied the input of the system with impulse response $h(t) = \begin{cases} \lambda e^{-\lambda t}, t > 0\\ 0, elsewhere \end{cases}$			
	input of the system with impulse response $n(t) = \{0, elsewhere$	BTL -3	Applying	CO5
	where λ			
	is a positive constant. Calculate the autocorrelation function of the $X(i)$			
0	networks response function $Y(t)$.			
8.	If X(t) is a WSS process and if $y(t) = \int_{-\infty}^{\infty} h(u) \cdot X(t-u) du$, then		A	CO5
	Formulate (i) $R_{XY}(\tau) = R_{XX}(\tau)*h(\tau)$ (ii) $R_{YY}(\tau) = R_{XY}(\tau)*h(\tau)$ if X(t) and Y(t) are jointly WSS where * denotes convolution operation.	BTL -4	Analyzing	005
8.	Consider a Gaussian white noise of zero mean and power spectral			
	density $\frac{N_0}{2}$ applied to a low pass filter whose transfer function is			CO5
	$H(f) = \frac{1}{1 + i2\pi f R C}.$	BTL -4	Analyzing	
	Evaluate the auto correlation function.			
9.	Analyze the mean of the output of a linear system is given by			CO5
7.	$\mu_Y = H(0)\mu_X$ where X(t) is WSS.	BTL -4	Analyzing	005
10.	A random process X(t) is the input to a linear system whose impulse			
	function is $h(t) = 2e^{-t}$, $t \ge 0$. The auto correlation function of the		Analyzina a	CO5
	process is $R_{XX}(\tau) = e^{-2 \tau }$, Identify the power spectral density of the	BTL -4	Analyzing g	
	output process Y(t).			
11.	If $x(t)$ is the input voltage to a circuit and $y(t)$ is the output voltage,			
	$\{X(t)\}$ is a stationary random process with $E(X) = 0$ and $R_{XX}(\tau) =$	BTL -4	Analyzing	COF
	$e^{-2 \tau }$. Find $E(Y)$, $S_{XX}(\omega)$ and $S_{YY}(\omega)$, if the system function is	DIL-4	ThatyZing	CO5
	given by $H(\omega) = \frac{1}{\omega^2 + 2^2}$.			
12.	If $Y(t) = A \cos(\omega_0 t + \theta) + N(t)$, where A is a constant, θ is a			
	random variable with a uniform distribution in $(-\pi, \pi)$ and $\{N(t)\}$ is a			
	band limited Gaussian whit noise with a power spectral density			COF
	$S_{NN}(\omega) = \begin{cases} \frac{N_o}{2}, & \text{for } \omega - \omega_0 < \omega_B \end{cases}$ Calculate the power spectral	BTL -3	Applying	CO5
	$\left(\begin{array}{c} S_{NN}(\omega) \\ 0 \end{array}\right)^{2}$ 0,elsewhere			
	density of $\{Y(t)\}$. Assume that N(t) and θ are independent.			
13.	If $X(t)$ is the input and $Y(t)$ is the output of the system. The			
	autocorrelation of $X(t)$ is $R_{XX}(\tau) = 3.\delta(\tau)$. Find the power spectral			
	density, autocorrelation function and mean-square value of the output	BTL -3	Applying	CO5
	$Y(t)$ with $H(\omega) = \frac{1}{6+i\omega}$.			
14.	A circuit has an impulse response given by $h(t) = \left\{\frac{1}{T}; 0 \le t \le T\right\}$.	BTL -3	Applying	CO5
	Express $S_{YY}(\omega)$ in terms of $S_{xx}(\omega)$.	DIL U	, pp i j ing	COS
15.	A wide sense stationary noise Process $N(t)$ has an autocorrelation			
	function $R_{XX}(\tau) = B e^{-3 \tau }$, where B is a constant. Find its Power	BTL -4	Analyzing	CO5
	Spectrum.			
16.	(b) If the input $X(t)$ and its output $Y(t)$ are related by			005
	$Y(t) = \int_{-\infty}^{\infty} h(u)X(t-u)du$, then show that the system is a linear	BTL -4	Analyzing	CO5
1=	time – Invariant system.			
17.	If $\{N(t)\}$ is a band limited white noise centered at a carrier frequency			
	$\omega_0 \text{ such that } S_{NN}(\omega) = \begin{cases} \frac{N_o}{2}, & \text{for } \omega - \omega_0 < \omega_B \\ 0, & \text{elsewhere} \end{cases}$	BTL -4	Analyzing	CO5
	Identify the auto correlation function of $\{N(t)\}$.			
l				-1

18.	A linear system is described by the impulse response $h(t) =$			
	$\frac{1}{RC}e^{-\frac{t}{RC}}u(t)$. Assume an input process whose auto correlation function is $A\delta(\tau)$. Point out the mean and the autocorrelation function of the output function.	BTL -4	Analyzing	CO5
