SRM VALLIAMMAI ENGINEERING COLLEGE (An Autonomous Institution)

S.R.M. Nagar, Kattankulathur - 603203

DEPARTMENT OF MATHEMATICS

QUESTION BANK

B.E<mark>-Agriculture Engin</mark>eering

MA3426- APPLIED MATHEMATICS FOR AGRICULTURAL ENGINEERING

Regulation – 2023

Academic Year – 2024 - 25

Prepared by

Dr.A.N.REVATHI, Assistant Professor / Mathematics

SRM Nagar, Kattankulathur – 603203.

DEPARTMENT OF MATHEMATICS

SUBJECT : MA3426- APPLIED MATHEMATICS FOR AGRICULTURAL ENGINEERING SEM / YEAR : IV SEMESTER /II YEAR (AGRICULTURAL ENGINEERING)

S.No	QUESTIONS	BT Level	Competence	COs					
UNIT-I	: ORDINARY DIFFERENTIAL EQUATIONS								
Higher order linear differential equations with constant coefficients – Method of variation of parameters.									
Part - A (2 MARK QUESTIONS)									
1.	$Solve(D^2 + 5D + 6)y = 0.$	BTL-2	Understanding	CO1					
2.	$Solve(D^2 + 7D + 12)y = 0.$	BTL-2	Understanding	CO1					
3.	Solve $(D^2 + 3D + 2)y$	BTL-2	Understanding	CO1					
4.	$Solve(D-1)^2 y = 0$	BTL-2	Understanding	CO1					
5.	Find the complementary function of $y'' - 4y' + 4y = 0$.	BTL-1	Remembering	CO1					
6.	Find the solution $(D^2 + 2D + 1)y$	BTL-2	Understanding	CO1					
7.	$Solve(D^2 + 1)y = 0.$	BTL-2	Understanding	CO1					
8.	Solve $(D^2 + a^2)y = 0$	BTL-2	Understanding	CO1					
9.	Solve $(D^4 + D^3 + D^2)y = 0$	BTL-2	Understanding	CO1					
10.	$Solve(D^4 - 1)y = 0.$	BTL-2	Understanding	CO1					
11.	Find the complementary function of $(D^2 + 4)y = sin 2x$.	BTL-1	Remembering	CO1					
12.	Estimate the P.I of $(D^3 + 3D^2 + 3D + 1)y = e^{-x}$.	BTL-1	Remembering	CO1					
13.	Solve $(D^3 - 6D^2 + 11D - 6)y$	BTL-1	Remembering	CO1					
14.	Find the particular Integral for $(D^2 - 2D + 1)y = 2e^x$.	BTL-2	Understanding	CO1					
15.	Estimate the P.I of $(D^2 - 4D + 4)y = e^{2x}$	BTL-1	Remembering	CO1					
16.	Find the P.I of $(D^2 + 4D + 5)y = e^{-2x}$	BTL-1	Remembering	CO1					
17.	Estimate the P.I of $(D^2 + 5D + 4)y = sin 2x$.	BTL-2	Understanding	CO1					
18.	Find the P.I of $(D^2 + 1)y = cos2x$	BTL-1	Remembering	CO1					
19.	Find the P.I of $(D^2 + 2)y = x^2$	BTL-1	Remembering	CO1					
20.	Find the P.I. of $(D - a)^2 y = e^{ax} sinx$	BTL-1	Remembering	CO1					
21.	Describe method of variation of parameter	BTL-1	Remembering	CO1					
22.	Write the Wronskian in method of variation of parameter	BTL-1	Remembering	CO1					
23.	Write the value of P in finding particular integral in solving ODE using	BTL-1	Remembering	CO1					
	method of variation of parameter			a a t					
24.	Write the value of Q in finding particular integral in solving ODE using method of variation of parameter	BTL-1	Remembering	CO1					
25	Write the formula for finding particular integral in solving ODE using	BTL-1	Remembering	CO1					
25.	method of variation of parameter		6						
	PART – B (16 MARK QUESTIONS)	•	•						
1.	Analyze the solution of $(D^3 - 6D^2 + 11D - 6)y = e^{-2x} + e^{-3x}$	BTL-4	Analyzing	CO1					

	-2r = 2		A 1 '	COL
2.	Analyze the solution of $(D^2 + 2D + 2)y = e^{-2x} + cos2x$.	BTL-4	Analyzing	CO1
3.	Analyze the solution of $(D^3 - 1)y = e^{2x}$.	BTL-4	Analyzing	CO1
4. (a)	Analyze the solution of $(D^2 + 4) y = cos2x + sin3x$.	BTL-4	Analyzing	CO1
4.(b)	Analyze the solution of $(2D^3 - D^2 + 4D - 2)y = e^x$	BTL-4	Analyzing	CO1
5.	Analyze the solution of $(D^2 + 3D + 2)y = sin3x$.	BTL-4	Analyzing	CO1
6. (a)	Analyze the solution of $(4D^2 + 4D - 3)y = e^{2x}$	BTL-4	Analyzing	CO1
6.(b)	Analyze the solution of $(D^2 + 4)y = sin^3x + \cos 2x$.	BTL-4	Analyzing	CO1
7.	Analyze the solution of $(D^2 + 1)y = sinx \sin 2x$.	BTL-4	Analyzing	CO1
8. (a)	Analyze the solution of $(D^2 - 6D + 9)y = 2x^2 - x + 3$	BTL-4	Analyzing	CO1
8.(b)	Analyze the solution of $(D^2 - 2D + 5)y = e^x \cos 2x$	BTL-4	Analyzing	CO1
9.	Analyze the solution of $(D^2 - 4D + 4)y = e^{-4x} + 5\cos^3 x$	BTL-4	Analyzing	CO1
10(a)	Analyze the solution of $(D^2 + 5D + 4)y = 4e^{-x} + x$	BTL-4	Analyzing	CO1
10(b)	Analyze the solution of $(D^2 + 4D + 3)y = e^{-x}sinx$	BTL-4	Analyzing	CO1
11.	Analyze the solution of $(D^2 + 2D + 1)y = e^{-x}x^2$	BTL-4	Analyzing	CO1
12(a)	Analyze the solution of $(D^2 + 4)y = x^2 \cos 2x$.	BTL-4	Analyzing	CO1
12(b)	Analyze the solution of $(D^2 + 4D - 12)y = (x - 1)e^{2x}$	BTL-4	Analyzing	CO1
13.	Analyze the solution of $(D^2 + 1)y = x\cos x$	BTL-4	Analyzing	CO1
14	(i) Apply method of variation of parameters to solve $y'' + y = tanx$	BTL-3	Applying	CO1
15.	Apply method of variation of parameters to solve $(D^2 + a^2)y = tanax$	BTL-3	Applying	CO1
16.	Apply method of variation of parameters to solve $y'' + y = cotx$	BTL-3	Applying	CO1
17.	Apply method of variation of parameters to solve	BTL-3	Applying	CO1
1/.	$(D^2 + a^2)y = secax$			
10	Using the method of variation of parameter solve	BTL-3	Applying	CO1
18.	$(D^2 - 6D + 9) y = \frac{e^{3x}}{x^2}$			
UNIT I	I – Special Distributions			-

Bernoulli, Binomial, Poisson, Uniform, Exponential and Normal distributions.

	PART-A(2 MARK QUESTIONS)				
1.	Write the probability function of Binomial Distribution.	BTL-1	Remembering	CO2	
2.	The mean and variance of binomial distribution are 5 and 4 Find the distribution of X.	BTL-1	Remembering	CO2	
3.	If 3% of the electric bulbs manufactured by a company are defective, Find the probability that in a sample of 100 bulbs exactly 5 bulbs are defective.	BTL-2	Understanding	CO2	
4.	For a Binomial distribution the mean is 6 and standard deviation is $\sqrt{2}$. Find parameters of the distribution	BTL-1	Remembering	CO2	
5.	If the mean and variance of a binomial distribution are respectively 6 and 2.4, find P(x=2).BTL-1Remembering				
6	A farmer plants 5 seeds, and the probability of a seed germinating is 0.8. What is the probability of exactly 4 seeds germinating?	BTL-2	Understanding	CO2	
7.	In a pest infestation, the probability of a plant being infected is 0.1. Find the probability of no infection among 5 plants.	BTL-2	Understanding	CO2	
8	Define Normal distribution	BTL-1	Remembering	CO2	
9.	State any two properties of normal distribution.	BTL-1	Remembering	CO2	
10.	The weights of harvested tomatoes follow a normal distribution with mean 1.5 kg and standard deviation 0.3 kg. What proportion of tomatoes weigh more than 2 kg?	BTL-2	Understanding	CO2	

		-		<u> </u>
11.	Define the Poisson distribution and mention one agricultural application.	BTL-2	Understanding	CO2
12.	Suppose that, on an average, in every three pages of a book there is one typographical error. If the number of typographical errors on a single page of the book is a Poisson random variable. What is the probability if at least one error on a specific page of the book?	BTL-2	Understanding	CO2
13.	Suppose that X has a Poisson distribution with parameter $\lambda = 2$. Compute P[X ≥ 1].	BTL-2	Understanding	CO2
14.	If X is a Poisson distribution such that $P(x = 1) = 4 P(x = 2)$. Find its mean and variance.	BTL-2	Understanding	CO2
15.	State the conditions under which a random variable follows a Poisson distribution.	BTL-1	Remembering	CO2
16.	Define the exponential distribution and its relationship to the Poisson distribution.	BTL-2	Remembering	CO2
17.	A field has an average of 5 weeds per square meter. What is the probability of finding no weeds in a square meter?	BTL-2	Understanding	CO2
18.	Write the probability density function of an exponential distribution.	BTL-1	Remembering	CO2
19.	Define the exponential distribution and its relationship to the Poisson distribution.	BTL-1	Remembering	CO2
20.	If the time between irrigation system failures follows an exponential distribution with a mean of 10 days, what is the probability of a failure occurring within the first 5 days?	BTL-2	Understanding	CO2
21.	A machine in a crop processing plant has a failure rate of 0.1 failures per hour. What is the probability that the machine works for at least 8 hours without failure?	BTL-2	Understanding	CO2
22.	State the memory less property of the exponential distribution.	BTL-1	Remembering	CO2
23.	Define the uniform distribution and provide an example in agriculture.	BTL-2	Understanding	CO2
24.	A field is equally likely to have rainfall between 0 mm and 100 mm. What is the probability of rainfall being between 40 mm and 70 mm?	BTL-2	Understanding	CO2
25.	If the soil moisture content is uniformly distributed between 15% and 25%, what is the probability of it being below 18%?	BTL-2	Understanding	CO2
	PART B (16 Mark Questions)		r	
1. (a)	Find the MGF of Binomial distribution and hence find its mean and variance.	BTL-3	Applying	CO2
1. (b)	Assume that 50% of all engineering students are good in mathematics. Determine the probabilities that among 18 engineering students (i) exactly 10, (ii) atleast 10 are good in mathematics.	BTL-3	Applying	CO2
2. (a)	A coin is biased so that a head is twice as likely to appear as a tail. If the coin is tossed 6 times, find the probabilities of getting (1) Exactly 2 heads, (2) at least 3 heads, (3) at most 4 heads.	BTL-4	Analyzing	CO2
2.(b)	In an agricultural experiment, the probability of a plant surviving after being transplanted is 0.75. If 15 plants are transplanted, find the probability that: (a) Exactly 10 plants survive. (b) At least 12 plants survive. (c) At most 8 plants survive.	BTL-4	Analyzing	CO2

3.	The probability of a man hitting a target is 1/4. If he fires 7 times, what is the probability of his hitting the target at least twice? And how many times must he fire so that the probability of his hitting the target at least once is greater than 2/3?	BTL-3	Applying	CO2
4.	Out of 2000 families with 4 children each, Find how many family would you expect to have i) at least 1 boy ii) 2 boys iii) 1 or 2 girls iv) no girls	BTL-4	Analyzing	CO2
5.	 A farmer plants 20 seeds, and each seed has a 60% chance of germinating. Using the binomial distribution, calculate the following: (a) The probability that exactly 12 seeds will germinate. (b) The probability that at least 15 seeds will germinate. (c) The expected number of seeds that will germinate. (d) The standard deviation of the number of germinated seeds. 	BTL-4	Analyzing	CO2
6. (a)	Derive the MGF of Poisson distribution and hence find its mean and variance.	BTL-3	Applying	CO2
6.(b)	Messages arrive at a switch board in a Poisson manner at an average rate of 6 per hour. Find the probability that exactly 2 messages arrive within one hour, no messages arrive within one hour and at least 3 messages arrive within one hour.	BTL-3	Applying	CO2
7.	The number of monthly breakdowns of a computer is a random variable having a Poisson distribution with mean equal to 1.8. Find the probability that this computer will function for a month (1) without breakdown (2) with only one breakdown and (3) with at least one breakdown.	BTL-4	Analyzing	CO2
8.	The life (in years) of a certain electrical switch has an exponential distribution with an average life of $\frac{1}{\lambda} = 2$. If 100 of these switches are installed in different systems; find the probability that atmost 30 fail during the first year.	BTL-4	Analyzing	CO2
9.(a)	 The average number of pests observed in a specific crop field per week is 5. Use the Poisson distribution to calculate: (a) The probability that no pests are observed in a given week. (b) The probability that exactly 3 pests are observed in a week. (c) The probability of observing more than 6 pests in a week. 	BTL-3	Applying	CO2
9.(b)	The marks obtained by a number of students for a certain subject is assumed to be normally distributed with mean 65 and standard deviation 5. If 3 students are taken at random from this set. Find the probability that exactly 2 of them will have marks over 70?	BTL-4	Analyzing	CO2
10.	 In a field of maize, pests appear according to a Poisson distribution with a mean of 4 pests per week. For a period of 2 weeks: (a) Calculate the probability of having exactly 5 pests in total over the 2 weeks. (b) What is the probability that there are more than 6 pests in the 2-week period? (c) Find the expected number of pests in the 2-week period and the standard deviation. 	BTL-4	Analyzing	CO2
11.	In an Engineering examination, a student is considered to have failed, secured second class, first class and distinction, according as he scores less than 45%, between 45% and 60% between 60% and 75% and above 75% respectively. In a particular year 10% of the students failed in the examination and 5% of the students get distinction. Find the percentage	BTL-4	Analyzing	CO2

		I		
	of students who have got first class and second class. Assume normal distribution of marks.			
12.	A bank manager has learnt that the length of time the customers have to wait for being attended by the teller is normally distributed with mean time of 5 minutes and standard deviation of 0.8 minutes. Find the probability that a customer has to wait (i) For less than 6 minutes (ii) For more than 3.5 minutes and between 3.4 and 6.2 minutes.	BTL-3	Applying	CO2
13.	Derive MGF, Mean, Variance of Normal distribution.	BTL-3	Applying	CO2
14.	If X follows a normal distribution with mean 12 and variance 16 cm, find the probabilities for (i) P($X \le 20$) (ii) P($X \ge 20$), and (iii) P($0 \le X \le 12$)	BTL-3	Applying	CO2
15.(a)	X is a normal variable with mean 30 and standard deviation of 5. Find (i) $P[26 \le X \le 40]$ (ii) $P[X \ge 45]$ (iii) $P[X < 30]$	BTL-3	Applying	CO2
15.(b)	In a normal population with mean 15 and standard deviation 3.5, it is found that 647 observations exceed 16.25. What is the total number of observations in the population.	BTL-3	Applying	CO2
16. (a)	Find the MGF of Uniform distribution and hence find its mean and variance.	BTL-3	Applying	CO2
16.(b)	The growth rate of a certain variety of wheat is uniformly distributed between 4 and 6 cm per week. Calculate the probability that:(a) The growth rate is less than 5 cm per week.(b) The growth rate is between 4.5 and 5.5 cm per week.	BTL-4	Analyzing	CO2
17.(a)	Suppose that the life of a industrial lamp in 1,000 of hours is exponentially distributed with mean life of 3,000 hours. Find the probability that (i)The lamp last more than the mean life (ii) The lamp last between 2,000 and 3,000 hours (iii) The lamp last another 1,000 hours given that it has already lasted for 250 hours.	BTL-3	Applying	CO2
17.(b)	The time between the arrival of trucks at a grain storage facility follows an exponential distribution with a mean time of 30 minutes.Find the probability that:(a) The time between two trucks is less than 20 minutes.(b) The time between two trucks is more than 40 minutes.	BTL-3	Applying	CO2
18.	 The lifetime of an agricultural irrigation pump follows an exponential distribution with an average lifetime of 2000 hours. For a sample of 10 pumps: (a) Find the probability that at least 5 pumps last more than 2500 hours. (b) Find the probability that exactly 3 pumps last between 1800 and 2200 hours. (c) What is the probability that a pump will last more than 3000 hours? 	BTL-3	Applying	CO2

	PART-A(2 Mark Questions)			
1.	State the conditions under which a binomial distribution becomes a normal distribution.	BTL -2	Understanding	CO3
2.	Explain how do you calculate 95% confidence interval for the average of the population?	BTL -1	Remembering	CO3
3.	Find the maximum likelihood estimates for the population mean when the population variance is known for random sampling from a normal population.	BTL -1	Remembering	CO3
4.	Obtain the maximum likelihood estimator of $f(x,\theta) = (1+\theta)x^{\theta}, 0 < x < 1$ based on a random sample of size x.	BTL -1	Remembering	CO3
5.	Write the normal equations for fitting a straight line by the method of least squares.	BTL -1	Remembering	CO3
6	An automobile repair shop has taken a random sample of 40 services that the average service time on an automobile is 130 minutes with a standard deviation of 26 minutes. Compute the standard error of the mean.	BTL -2	Understanding	CO3
7.	Two variables X and Y have the regression lines $3X + 2Y - 26 = 0$, $6X + Y - 31 = 0$, Find the mean value of X and Y.	BTL -2	Understanding	CO3
8	State any two properties of regression lines.	BTL -1	Remembering	CO3
9.	Let the lines of regression concerning two variables x and y be given by $y = 32 - x$ and $x = 13 - 0.25y$. Obtain the values of the means.	BTL -2	Understanding	CO3
10	What are the merits and demerits of the least square method.	BTL -1	Remembering	CO3
11.	Give the normal equations to fit the parabola $y = a + bx + cx^2$	BTL -2	Understanding	CO3
12.	Can Y = $5 + 2.8x$ and X = $3 - 0.5$ y be the estimated regression equations of y on x and x on y respectively ? Explain.	BTL -1	Remembering	CO3
13.	Define confidence coefficient.	BTL-1	Remembering	CO3
14.	What is the level of significance in testing of hypothesis?	BTL -1	Remembering	CO3
15.	Define confidence limits for a parameter.	BTL -2	Understanding	CO3
16.	Define estimator, estimate and estimation.	BTL-1	Remembering	CO3
17.	Distinguish between point estimation and interval estimation.	BTL-1	Remembering	CO3
18.	Mention the properties of a good estimator.	BTL-1	Remembering	CO3
19.	What is meant by maximum likelihood estimator ?	BTL -2	Understanding	CO3
20.	What is the definition of an efficient estimator in estimation theory?	BTL -2	Understanding	CO3
21.	What is a sufficient statistic in estimation theory?	BTL -2	Understanding	CO3
22.	What is the definition of an efficient estimator in estimation theory?	BTL -2	Understanding	CO3
23.	Define unbiasedness of a good estimator.	BTL -2	Understanding	CO3
24.	How do you check if an estimator is consistent?	BTL -1	Remembering	CO3
25.	What does it mean for an estimator to be consistent?	BTL-1	Remembering	CO3
	PART-B (16 Marks Questions)			
1.	 For a random sampling from a normal population find the maximum likelihood estimators for i) The population mean, when the population variance is known. ii) The population variance, when the population mean is known. iii) The simultaneous estimation of both the population mean and variance. 	BTL -3	Applying	CO3
2.	Obtain the lines of regression	BTL-3	Applying	CO3

		X	50	55	50	60	65	65	65	60	6					
											0					
		Y	11	14	13	16	16	15	15	14	1 3					
		The price of a commodity during 93-98 are given below. Fit a														
		parabola $y = a + bx + cx^2$ to these data. Calculate the trend values,														
3.	-	estimate the period of the commodity for the year 1999. X 1993 1994 1995 1996										BTL -3	Applying	CO3		
	X Y					1994										
		11.000	100	-		107	mlra of	12 10 ct	-	ta in t	140					
	The fo		-						ne ma							
	each.	i the t		Sity C	Aumm	ation		101 ti		Anna	111 01	501	.11			
	Interna	l Mar	ks :	25	28	30	32	35	30	6 3	38	39	42			
4.	45													BTL -3	Applying	CO3
	Univers	sityM	arks	: 20	26	29	30	25	5 18	3 2	26	35	35	DIL-5	Applying	005
	46	•			6.1	1.	c									
	a) Obta b) The									nork	$af 2^{4}$	5				
	c) The															
	Find th															
-	poisson												s		A	
5.	varianc							-						BTL -3	Applying	CO3
	parame							1		_	1					
	Fit a st	-		y = a	+ bx f	for the	e follo	wing	data ł	by the	e prir	nciple	e of			
	least sq			1	2	2										CO 2
6.					2 3.3	3	4 6.3	1						BTL -4	Understanding	CO3
			the va													
	A rand							f size	5 is d	rawn	fron	n a				
	populat		-													
	Consid			0												
7 (a)	$t - \frac{(x_1)}{(x_2)}$	$x_{1} + x_{2}$	$+ x_3 -$	$+x_4 +$	<i>x</i> ₅)	<i>t</i> _ ($x_1 + x_2$	(2) + Y	an.	d + -	(2)	$x_1 + y_1$	$x_2 + \lambda x$	³ BWhere	l Applying	CO3
7.(a)	$\iota_1 =$		5		,	$l_2 - $	2		. ₃ un	<i>u 1</i> ₃ -	_		3	DVIILE FO	Applying	005
	is such	that t	3 is ar	1 unbi	ased e	estima	ator of	μ .	Find ·	λ.Are	² t1	and	l t2			
	unbiase		State g	iving	reaso	n, the	estim	ator v	vhich	is be	st an	nong				
	t1,t2,an		/ 1*1	1	·· ·	D	1		. 1.		41.		- 6			
	Rs. 70		ost lik Icutta	• •			-	orrest	ondii	ig to	ine p	once	or			
	1.5. 70	ui Cal	icuita	nom			Boi	mbav								
7.(b)					0.		201							BTL-3	Applying	CO3
	A	Avera	ge Pri	ce		65		67								
			d devi			2.5		3.5				fficie	ent			
	betwee															
	Prove t												170			
8.		aving pdf $f(x,\alpha) = 2/\alpha 2 (\alpha - x)$. $0 < x < \alpha$ for the sample of unit size BTL s 2x, x being the sample value. Show also that the estimator is not						BTL -3	Applying	CO3						
	is 2x, x being the sample value. Snow also that the estimator is not unbiased.															
	Fit a str		line t	rend o	of the	form	y = a	+ bx t	o the	data	give	n bel	ow			
9.					-		-	$\frac{\text{ct the value of y when } x = 70}{\text{BTL} - 3}$					Applying	CO3		
			68	73		9	67	65		6	67				, thhing	
	У	69	72	70	7	0	68	67	6	8	64					

	Fit the n	nodel v =	axb to th	e follov	ving data.								
10.	Х	1	2	3	4	5		6			BTL -3	Applying	CO3
	Y	2.98	4.26	5.21	6.10	6.80)	7.50					
11.(a)	Fit a str	aight line X 1	y = ax + 3	$\frac{c \text{ to the}}{5}$ 7	following	data.	13	15	17	1	BTL -4	Analyzing	CO3
11.(<i>a</i>)	-	$\frac{X}{Y}$ 10			27 31	35	30	35	40	-	DIL -4	Anaryzing	05
	Find the	regressio	on line of	Y on X	for the da	ta		_	1				
11.(b)	-	$\begin{array}{c c} \mathbf{X} & 1 \\ \mathbf{Y} & 3 \end{array}$	-	2		5					BTL -4	Analyzing	CO3
	If $x_{1,}x_{2,}$				nple from		P^2) s	how the	at		BTL-4	Analyzing	
12.					biased estir								CO3
		0			ents of the fuel dropl				engine	<u> </u>			
	evapora			ourning	, idei diopi	ets m	un n	npuise	engin				
		ocity (cm	·) 100	140	13	80 2	220				
13.	260 3	00 340) 380								BTL -3	Applying	CO3
					37 0.35	0.78	3	0.56	0.75				
		1.36 1.			the method	lofle	act cr	nuares	and us				
		0			ficient of a			· ·		SC			
	velocity	is 190 cr	n/s.	21					-				
14.		equation of 2	of the form 3	m y = a	b^{x} to the fo	ollowin	ng da 6	ita	6		BTL-3	Applying	CO3
14.		<u> </u>	172.8	207		3	29	8.5	H.				005
					li <mark>nes</mark> y = a	ax + b	fron	the fo	llowin	g			
15.	data, using the method of least squares.X636939639								1	BTL-4	Analyzing		
15.	y 52	42 58					59	57 34		_	DIL	Anaryzing	CO3
	6	1 1			4			0 6	2				
16.					ample of si Obtain th						BTL -3	Applying	CO3
10.	estimato			ununce.		e max	mu	n nken	noou		DIL-3	Applying	005
	Let X1				ample size		n the	Poisso	n				
17.		f(x)	$(\lambda) = \frac{\lambda^{x} \epsilon}{2}$	$\frac{e^{-\lambda}}{\cdot}$ wh	ere $0 \leq \lambda$	$\infty \ge$					BTL-4	Analyzing	CO3
	distribut	.1011				•	Obta	ain the			DIL	T mary 2mg	
	-	m likelih			λ the follow	ving da	nta						
18.		$\mathbf{X}: 0$		3 4	the follow	ing ua	iia.				BTL -3	Applying	CO3
				22 38									
	-IV CORRI				nca Corrola	ation to	acto f	ar slope	and co	rrol	ation Analy	sis of variance, Reg	raccian
analysis		-331011, CUI	ve nitilig,	Covaria			515 10	or siope			ation, Alldly	sis of variance, reg	100510[1
				PA	RT-A(2 M	lark Q)uest	tions)					
1.	Define s	imple line	ear regres	sion an	d state its e	equation	on.				BTL -2	Understanding	CO4
	t					-					+	l e	ł

3.	Differentiate between dependent and independent variables in	BTL -1	Remembering	CO4
4.	regression analysis. State the principle of least squares.	BTL -1	Remembering	CO4
-	What is meant by the term "line of best fit"?	BTL -1	Remembering	CO4
<u>6</u> .	List the steps involved in fitting a parabola to a given set of data points.	BTL -2	Understanding	CO4
7.	Explain the difference between interpolation and curve fitting.	BTL -2	Understanding	CO4
8.	Define covariance and state its mathematical formula.	BTL -1	Remembering	CO4
9.	What does the sign of covariance indicate about the relationship between two variables?	BTL -2	Understanding	CO4
10.	How is covariance different from correlation?	BTL -1	Remembering	CO4
11.	Define the term "correlation" and its significance in data analysis.	BTL -2	Understanding	CO4
12.	What does a correlation coefficient of +1 or -1 indicate?	BTL -1	Remembering	CO4
13.	State the null hypothesis in a test for the significance of a correlation coefficient.	BTL-1	Remembering	CO4
14.	Write the formula to calculate the t-statistic for testing the slope of a regression line.	BTL -1	Remembering	CO4
15.	What is the significance of testing the slope in regression analysis?	BTL -2	Understanding	CO4
16 .	What is the purpose of analysis of variance (ANOVA)?	BTL-1	Remembering	CO4
17.	Define the terms "factor" and "levels" in ANOVA.	BTL-1	Remembering	CO4
18 .	State the null hypothesis for a one-way ANOVA.	BTL-1	Remembering	CO4
19.	What is the F-statistic in ANOVA, and how is it calculated?	BTL -2	Understanding	CO4
20.	Mention any two assumptions required for performing ANOVA.	BTL -2	Understanding	CO4
21.	Define regression analysis	BTL -2	Understanding	CO4
22.	What is the least square method in regression analysis?	BTL -2	Understanding	CO4
23.	What does the coefficient of determination (R ²) indicate in a regression analysis?	BTL -2	Understanding	CO4
24.	Explain the assumptions of linear regression.	BTL -1	Remembering	CO4
25.	What is the significance of the slope and intercept in a simple linear regression model?	BTL -1	Remembering	CO4
	PART-B (16 Mark Questions)			
1.	A company collects data on the advertising expenditure (in thousand rupees) and the corresponding sales (in thousand units) over a period of 6 months: Advertising (X): 10 20 30 40 50 60 Sales (Y): 15 25 35 45 50 65 Perform a linear regression analysis to determine the relationship between advertising expenditure and sales. Evaluate the slope, intercept, and R ² value, and interpret the results.	BTL -3	Applying	CO4

2. (a)	In an engineering study, data on material strength (Y, in MPa) is collected as a function of the percentage of alloy (X, in %). Given the following data:Alloy percentage (X):510152025Material strength (Y):5055657080	BTL -3	Applying	CO4
	Fit a linear regression model, find the regression coefficients, and use the model to predict material strength when the alloy percentage is 18%. Evaluate the model's performance using residual analysis.			
3. (a)	By the method of least square, find the straight lines that best fits the following data X 5 10 15 20 25 Y 16 19 23 26 30	BTL -3	Applying	CO4
3.(b)	Find the second degree parabola of the form $y = ax^2 + bx + c$ to the following data X -3 -2 -1 0 1 2 3 Y 4.63 2.11 0.67 0.09 0.63 2.15 4.58	BTL -3	Applying	CO4
4. (a)	Explain the method of fitting a power curve y=axb using logarithmic transformation. Use the method of least squares and apply it to the following data:	BTL -3	Applying	CO4
4.(b)	X 19291 1930 19311 1932 1933 1934 1935 1936 1937 Y 352 356 357 358 360 361 361 360 359	BTL -3	Applying	CO4
5.	Given the following data on two variables X and Y: X={1,2,3,4} Y={2,4,6,8} Compute the covariance between X and Y and interpret the result.	BTL -3	Applying	CO4
6.	Given the joint probability distribution of two random variables X and Y, compute the covariance between them:XY $P(X,Y)$ 110.1	BTL -3	Applying	CO4

$ \begin{array}{ c c c c c c } \hline 1 & 2 & 0.2 \\ \hline 2 & 1 & 0.3 \\ \hline 2 & 2 & 0.4 \\ \hline \\ $		1 /	2 0 2				
Image: Algorithm of the second sec			2 0.2				
Also, interpret the result of covariance and its implication on the relationship between X and Y.Also, interpret the result of covariance in multivariate data analysis. Derive the covariance matrix for the following dataset: $X = \{2,4,6\};$ $Y = \{1,3,5\};$ $Z = \{7,9,11\}.$ BTL -4AnalyzingCO4 7. Covariance matrix for the following dataset: $X = \{2,4,6\};$ $Z = \{7,9,11\}.$ BTL -4AnalyzingCO4 8. In an engineering context, the stress and strain of a material are measured during a tensite test. The data is as follows: Stress (X) in MPa: {10,20,30,40,50} Strain (Y) in %: {1,2,3,4,5} Calculate the covariance, interpret the result, and discuss how this analysis helps in understanding material properties.BTL -3ApplyingCO4 9. (a) Given the following data, test whether the correlation between X and Y is significant at a 5% level: $X = \{1,2,3,4,5\}$ $Y = \{2,4,6,8,10\}$ Compute the correlation coefficient and verify its significance.BTL -4AnalyzingCO4 9. (b) Discuss the procedure for testing the slope of a regression line and its importance in practical applications.BTL -4AnalyzingCO4 10. The following data represents the relationship between pressure (X) and temperature (Y) in a engineering system: (c). Discuss how this information can be used in engineering design.BTL -4AnalyzingCO4 11. The slope of a regression line filted to the relationship between point significanty different from zero at a 5% level of significance, using the following data: Sum of squares for X (SSX) = 50 Sum of squares for Y (SSY) = 80BTL -4AnalyzingCO4		2	1 0.3				
Also, interpret the result of covariance and its implication on the relationship between X and Y.Also, interpret the result of covariance in multivariate data analysis. Derive the covariance matrix for the following dataset: $X = \{2,4,6\};$ $Y = \{1,3,5\};$ $Z = \{7,9,11\}.$ BTL -4AnalyzingCO4 7. Covariance matrix for the following dataset: $X = \{2,4,6\};$ $Z = \{7,9,11\}.$ BTL -4AnalyzingCO4 8. In an engineering context, the stress and strain of a material are measured during a tensite test. The data is as follows: Stress (X) in MPa: {10,20,30,40,50} Strain (Y) in %: {1,2,3,4,5} Calculate the covariance, interpret the result, and discuss how this analysis helps in understanding material properties.BTL -3ApplyingCO4 9. (a) Given the following data, test whether the correlation between X and Y is significant at a 5% level: $X = \{1,2,3,4,5\}$ $Y = \{2,4,6,8,10\}$ Compute the correlation coefficient and verify its significance.BTL -4AnalyzingCO4 9. (b) Discuss the procedure for testing the slope of a regression line and its importance in practical applications.BTL -4AnalyzingCO4 10. The following data represents the relationship between pressure (X) and temperature (Y) in a engineering system: (c). Discuss how this information can be used in engineering design.BTL -4AnalyzingCO4 11. The slope of a regression line filted to the relationship between point significanty different from zero at a 5% level of significance, using the following data: Sum of squares for X (SSX) = 50 Sum of squares for Y (SSY) = 80BTL -4AnalyzingCO4			2 0 1				
relationship between X and Y.Image: constraint of the following dataset: X=[2,4,6]; Y={1,3,5}; Z=(7,9,1]).Set (A, A)		2	2 0.4				
relationship between X and Y.Image: constraint of the following dataset: X=[2,4,6]; Y={1,3,5}; Z=(7,9,11).Serve the following dataset: X=[2,4,6]; Z=(7,9,11).Serve the following dataset: X=[2,4,6]; Z=(7,9,11).Serve the significance of the covariance matrix in real-world applications.BTL -4AnalyzingCO48.In an engineering context, the stress and strain of a material are measured during a tensile test. The data is as follows: Stress (X) in MPa: (10,20,30,40,50) Strain (Y) in %: (1,2,3,4,5) Calculate the covariance, interpret the result, and discuss how this analysis helps in understanding material properties.BTL -3ApplyingCO49. (a)Given the following data, test whether the correlation between X and Y is significant at a 5% level: X={1,2,3,4,5} Y={2,4,6,8,10}BTL -4AnalyzingCO49. (b)Discuss the procedure for testing the slope of a regression line and its importance in practical applications.BTL -4AnalyzingCO410.The following data represents the relationship between pressure (X) and temperature (Y) in an engineering system: Importance in practical applications.BTL -4AnalyzingCO410.The following data represents the relationship between pressure (X) and temperature (Y) is estimated to be 0.8. Test whether this slope is significance at a 5% level. (c). Discuss how this information can be used in engineering design.BTL -4AnalyzingCO411.The following data represents the relationship between load (X) and deflection (Y) is estimated to be 0.8. Test whether this slope is significance, using the following data: (c). Discuss how this information can be used in engineering design.BTL -4		Also interpret th	he result of a	ovariance and its implication on the			
Image: constraint of the constraint of the constraint of the constraint of the following dataset: $X=\{2,4,6\}$; $Y=\{1,3,5\}$; $Z=\{7,9,1\}$.BTL -4AnalyzingCO4 7. $Y=\{1,3,5\}$; $Z=\{7,9,1\}$. Discuss the significance of the covariance matrix in real-world applications.BTL -4AnalyzingCO4 8. In an engineering context, the stress and strain of a material are measured during a tensile test. The data is as follows: Stress (X) in MPa: {10,20,30,40,50} Strain (Y) in %: {1,2,3,4,5} Calculate the covariance, interpret the result, and discuss how this analysis helps in understanding material properties.BTL -3ApplyingCO4 9. (a) Given the following data, test whether the correlation between X and Y is significant at a 5% level: $X={1,2,3,4,5}$ BTL -4AnalyzingCO4 9. (b) Discuss the procedure for testing the slope of a regression line and its importance in practical applications.BTL -4AnalyzingCO4 10. The following data represents the relationship between pressure (X) and timperature (Y) in an engineering system:BTL -4AnalyzingCO4 11. The slope of a regression line and its is significance at a 5% level. (c). Discuss how this information can be used in engineering design.BTL -4AnalyzingCO4 11. The slope of a regression line fited to the relationship between load (X) and deflection (Y) is estimated to be 0.8. Test whether this slope is significantly different from zero at a 5% level. (c). Discuss how this information can be used in engineering design.BTL -4AnalyzingCO4		· 1					
r.covariance matrix for the following dataset: $X=\{2,4,6\};$ $Z=\{7,9,11\}.$ BTL -4AnalyzingCO48.In an engineering context, the stress and strain of a material are measured during a tensile test. The data is as follows: Stress (X) in MPa: $\{10,20,30,40,50\}$ Strain (Y) in %: $\{1,2,3,4,5\}$ BTL -3ApplyingCO49. (a)Given the following data, test whether the correlation between X and Y is significant at a 5% level: $X=\{1,2,3,4,5\}$ BTL -4AnalyzingCO49. (b)Discuss the procedure for testing the slope of a regression line and its importance in practical applications.BTL -4AnalyzingCO410. $\frac{X}{Y}=\{2,4,6,8,10\}$ Compute the correlation coefficient. (b). Test its significance at a 5% level. (c). Discuss how this information can be used in engineering design.BTL -4AnalyzingCO411.The slope of a regression line fitted to the relationship between load (X) is significance, using the importance in practical applications.BTL -4AnalyzingCO411.The slope of a regression line fitted to the relationship between load (X) is significance, using the following data: (c). Discuss how this information can be used in engineering design.BTL -4AnalyzingCO411.The slope of a regression line fitted to the relationship between load (X) significance, using the following data: Sum of squares for Y (SSY) = 80BTL -4AnalyzingCO4							
7. $X=\{2,4,6\};$ $Y=\{1,3,5\};$ $Z=\{7,9,11\}.$ BTL -4AnalyzingCO4 8. In an engineering context, the stress and strain of a material are measured during a tensile test. The data is as follows: Stress (X) in MPa: {10,20,30,40,50} Strain (Y) in %: {1,2,3,4,5}BTL -3ApplyingCO4 9. (a) Given the following data, test whether the correlation between X and Y is significant at a 5% level: $X=\{1,2,3,4,5\}$ $Y=\{2,4,6,8,10\}$ BTL -4AnalyzingCO4 9. (a) Given the following data, test whether the correlation between X and Y is significant at a 5% level: $X=\{1,2,3,4,5\}$ $Y=\{2,4,6,8,10\}$ BTL -4AnalyzingCO4 10. The following data represents the relationship between pressure (X) and temperature (Y) in an engineering system:BTL -4AnalyzingCO4 (a) . Compute the correlation coefficient. (b). Test its significance at a 5% level. (c). Discuss how this information cane be used in engineering design.BTL -4AnalyzingCO4 11. The slope of a regression line fitted to the relationship between load (X) and deflection (Y) is estimated to be 0.8. Test whether this slope is significante, using the slope of x (SSX) = 50 Sum of squares for Y (SSY) = 80BTL -4AnalyzingCO4		-		•			
7. $Y = \{1,3,5\};$ $Z = \{7,9,11\}.$ BTL -4AnalyzingCO4Discuss the significance of the covariance matrix in real-world applications.BTL -4AnalyzingCO48.In an engineering context, the stress and strain of a material are measured during a tensile test. The data is as follows: Stress (X) in MPa: $\{10,20,30,40,50\}$ Strain (Y) in %: $\{1,2,3,4,5\}$ Calculate the covariance, interpret the result, and discuss how this analysis helps in understanding material properties.BTL -3ApplyingCO49. (a)Given the following data, test whether the correlation between X and Y is significant at a 5% level: $X = \{1,2,3,4,5\}$ Compute the correlation coefficient and verify its significance.BTL -4AnalyzingCO49. (b)Discuss the procedure for testing the slope of a regression line and its importance in practical applications.BTL -4AnalyzingCO410.The following data represents the relationship between pressure (X) and temperature (Y) in an engineering system: \overline{Y} BTL -4AnalyzingCO4(a). Compute the correlation coefficient. (b). Test its significance at a 5% level. (c). Discuss how this information can be used in engineering design. (c). Discuss how this information can be used in engineering design. (c). Discuss how this information can be used in engineering design.BTL -4AnalyzingCO411.The slope of a regression line fitted to the relationship between load (X) and deflection (Y) is estimated to be 0.8. Test whether this slope is significantly different from zero at a 5% level of significance, using the following data:BTL -4AnalyzingCO4				owing dataset:			
Image: Interpret the control of the covariance matrix in real-world applications.BTL -4AnalyzingCO48.In an engineering context, the stress and strain of a material are measured during a tensile test. The data is as follows: Stress (X) in MPa: {10,20,30,40,50} Strain (Y) in %: {1,2,3,4,5}BTL -3ApplyingCO49. (a)Given the following data, test whether the correlation between X and Y is significant at a 5% level: X={1,2,3,4,5}BTL -4AnalyzingCO49. (a)Given the following data, test whether the correlation between X and Y is significant at a 5% level: X={1,2,3,4,5}BTL -4AnalyzingCO49. (b)Discuss the procedure for testing the slope of a regression line and its importance in practical applications.BTL -4AnalyzingCO410.The following data represents the relationship between pressure (X) and temperature (Y) in an engineering system:BTL -4AnalyzingCO4(a). Compute the correlation coefficient. (b). Test its significance at a 5% level. (c). Discuss how this information can be used in engineering design.BTL -4AnalyzingCO411.The slope of a regression line difficance, using the following data: significante of the coefficient. (b). Test its significance at a 5% level. (c). Discuss how this information can be used in engineering design.BTL -4AnalyzingCO411.The slope of a regression line fitted to the relationship between load (X) and deflection (Y) is estimated to be 0.8. Test whether this slope is significantly different from zero at a 5% level of significance, using the following data: Sum of squares for X (SSX) = 50 Sum of	7						
Discuss the significance of the covariance matrix in real-world applications.In an engineering context, the stress and strain of a material are measured during a tensile test. The data is as follows: Stress (X) in MPa: {10,20,30,40,50} Strain (Y) in %: {1,2,3,4,5} Calculate the covariance, interpret the result, and discuss how this analysis helps in understanding material properties.BTL -3ApplyingCO49. (a)Given the following data, test whether the correlation between X and Y is significant at a 5% level: $X=\{1,2,3,4,5\}$ $Y=\{2,4,6,8,10\}$ Compute the correlation coefficient and verify its significance.BTL -4AnalyzingCO49. (b)Discuss the procedure for testing the slope of a regression line and its importance in practical applications.BTL -4AnalyzingCO410.The following data represents the relationship between pressure (X) and temperature (Y) in an engineering system:BTL -4AnalyzingCO4(a). Compute the correlation coefficient. (b). Test its significance at a 5% level. (c). Discuss how this information can be used in engineering design.BTL -4AnalyzingCO411.The slope of a regression line fitted to the relationship between load (X) and deflection (Y) is estimated to be 0.8. Test whether this slope is significantly different from zero at a 5% level of significance, using the following data:BTL -4AnalyzingCO411.The slope of a squares for X (SSX) = 50 Sum of squares for Y (SSY) = 80BTL -4AnalyzingCO4	/.				BTL -4	Analyzing	CO4
applications.Image: Constant of the stress and strain of a material are measured during a tensile test. The data is as follows: Stress (X) in MPa: {10,20,30,40,50} Strain (Y) in %: {10,20,30,40,50} Strain (Y) in %: {10,23,4,5} Calculate the covariance, interpret the result, and discuss how this analysis helps in understanding material properties.BTL -3ApplyingCO49. (a)Given the following data, test whether the correlation between X and Y is significant at a 5% level: X={1,2,3,4,5} Y={2,4,6,8,10} Compute the correlation coefficient and verify its significance.BTL -4AnalyzingCO49. (b)Discuss the procedure for testing the slope of a regression line and its importance in practical applications.BTL -4AnalyzingCO410.The following data represents the relationship between pressure (X) and temperature (Y) in an engineering system:BTL -4AnalyzingCO4(a). Compute the correlation coefficient. (b). Test its significance at a 5% level. (c). Discuss how this information can be used in engineering design.BTL -4AnalyzingCO411.The slope of a regression line fitted to the relationship between load (X) and deflection (Y) is estimated to be 0.8. Test whether this slope is significance, using the following data: Sum of squares for X (SSX) = 50 Sum of squares for Y (SSY) = 80BTL -4AnalyzingCO4							
 8. In an engineering context, the stress and strain of a material are measured during a tensile test. The data is as follows: Stress (X) in MPa: {10,20,30,40,50} Strain (Y) in %: {1,2,3,4,5} Calculate the covariance, interpret the result, and discuss how this analysis helps in understanding material properties. 9. (a) Given the following data, test whether the correlation between X and Y is significant at a 5% level: X={1,2,3,4,5} Compute the correlation coefficient and verify its significance. 9. (a) Given the following data, test whether the correlation between X and Y is significant at a 5% level: X={1,2,3,4,5} Compute the correlation coefficient and verify its significance. 9. (b) Discuss the procedure for testing the slope of a regression line and its importance in practical applications. 10. The following data represents the relationship between pressure (X) and temperature (Y) in an engineering system: X 10 20 30 40 50 (A) 10 20 30 40 50 (A) 10 (A) 12 (A) 10 (A) 1		-	incance of the	e covariance matrix în real-world			
$ \begin{array}{ c c c c c c c c } & \mbox{measured during a tensile test. The data is as follows: Stress (X) in MPa: {10.20,30,40,50} \\ & Stress (X) in MPa: {10.20,30,40,50} \\ & Strain (Y) in \%; {1,2,3,4,5} \\ & Calculate the covariance, interpret the result, and discuss how this analysis helps in understanding material properties. \\ \hline Calculate the covariance, interpret the result, and discuss how this analysis helps in understanding material properties. \\ \hline Strain (Y) in \%; {1,2,3,4,5} \\ & Strain (Y, Strain (Y$	•		a contant 41	a strong and stroip of a motorial are			
$ \begin{array}{ c c c c c c c } & & & & & & & & & & & & & & & & & & &$	0.		-				
Strain (17) In $\%$: $\{1,2,3,4,5\}$ If $Y = 0$ Calculate the covariance, interpret the result, and discuss how this analysis helps in understanding material properties.9. (a)Given the following data, test whether the correlation between X and Y is significant at a 5% level: $X=\{1,2,3,4,5\}$ $Y=\{2,4,6,8,10\}$ BTL -4AnalyzingCO49. (a)Discuss the procedure for testing the slope of a regression line and its importance in practical applications.BTL -4AnalyzingCO4IDO biscuss the procedure for testing the slope of a regression line and its importance in practical applications.BTL -4AnalyzingCO4IDO biscuss the procedure for testing the slope of a regression line and its importance in practical applications.BTL -4AnalyzingCO4IDO biscuss the procedure for testing the slope of a regression line and its importance in practical applications.BTL -4AnalyzingCO4(a)Compute the correlation coefficient. (b)BTL -4AnalyzingCO4(a)Compute the correlation coefficient. (b)BTL -4AnalyzingCO4(a)Compute the correlation coefficient. (b)BTL -4AnalyzingCO4							
analysis helps in understanding material properties.Image: Constraint of the		St	train (Y) in	6: {1,2,3,4,5}	BTL -3	Applying	CO4
9. (a)Given the following data, test whether the correlation between X and Y is significant at a 5% level: $X = \{1,2,3,4,5\}$ $Y = \{2,4,6,8,10\}$ BTL -4AnalyzingCO49. (b)Discuss the procedure for testing the slope of a regression line and its importance in practical applications.BTL -4AnalyzingCO410.The following data represents the relationship between pressure (X) and temperature (Y) in an engineering system:BTL -4AnalyzingCO4(a). Compute the correlation coefficient. (b). Test its significance at a 5% level. (c). Discuss how this information can be used in engineering design.BTL -4AnalyzingCO411.The slope of a regression line fitted to the relationship between load (X) and deflection (Y) is estimated to be 0.8. Test whether this slope is significantly different from zero at a 5% level of significance, using the following data: Sum of squares for X (SSX) = 50 Sum of squares for Y (SSY) = 80BTL -4AnalyzingCO4							
is significant at a 5% level: $X=\{1,2,3,4,5\}$ $Y=\{2,4,6,8,10\}$ Compute the correlation coefficient and verify its significance. 9.(b) Discuss the procedure for testing the slope of a regression line and its importance in practical applications. 10. The following data represents the relationship between pressure (X) and temperature (Y) in an engineering system: X = 10 20 30 40 50 Y 12 24 30 40 50 (a). Compute the correlation coefficient. (b). Test its significance at a 5% level. (c). Discuss how this information can be used in engineering design. 11. The slope of a regression line fitted to the relationship between load (X) and deflection (Y) is estimated to be 0.8. Test whether this slope is significantly different from zero at a 5% level of significance, using the following data: Sum of squares for X (SSX) = 50 Sum of squares for Y (SSY) = 80 BTL -4 Analyzing CO4		analysis helps in	understandi	ng material prop <mark>erti</mark> es.			
$ \begin{array}{ c c c c c } X = \{1,2,3,4,5\} & & & & & & & & & & & & & & & & & & &$	9. (a)			t wheth <mark>er the correlation be</mark> tween X and Y			
$\begin{array}{ c c c c } Y = \{2,4,6,8,10\} & \qquad $				and			
Compute the correlation coefficient and verify its significance.Image: Normal State Stat				E C E	BTL -4	Analyzing	CO4
9.(b)Discuss the procedure for testing the slope of a regression line and its importance in practical applications.BTL -4AnalyzingCO410.The following data represents the relationship between pressure (X) and temperature (Y) in an engineering system: X 1020304050Y1224304050BTL -4AnalyzingCO4(a). Compute the correlation coefficient. (b). Test its significance at a 5% level. (c). Discuss how this information can be used in engineering design.BTL -4AnalyzingCO411.The slope of a regression line fitted to the relationship between load (X) and deflection (Y) is estimated to be 0.8. Test whether this slope is significantly different from zero at a 5% level of significance, using the following data: Sum of squares for X (SSX) = 50 Sum of squares for Y (SSY) = 80BTL -4AnalyzingCO4							
importance in practical applications.BTL -4AnalyzingCO410.The following data represents the relationship between pressure (X) and temperature (Y) in an engineering system: X 1020304050Y1224304050BTL -4AnalyzingCO4(a). Compute the correlation coefficient. (b). Test its significance at a 5% level. (c). Discuss how this information can be used in engineering design.BTL -4AnalyzingCO411.The slope of a regression line fitted to the relationship between load (X) and deflection (Y) is estimated to be 0.8. Test whether this slope is significantly different from zero at a 5% level of significance, using the following data: Sum of squares for X (SSX) = 50 Sum of squares for Y (SSY) = 80BTL -4AnalyzingCO4	0 (b)	-					
10. The following data represents the relationship between pressure (X) and temperature (Y) in an engineering system: Image: Constraint of the constr	9.(D)	-			BTL -4	Analyzing	CO4
temperature (Y) in an engineering system: X 1020304050Y1224304050(a). Compute the correlation coefficient.(b). Test its significance at a 5% level.BTL -4AnalyzingCO4(c). Discuss how this information can be used in engineering design.CO4CO4CO411.The slope of a regression line fitted to the relationship between load (X) and deflection (Y) is estimated to be 0.8. Test whether this slope is significantly different from zero at a 5% level of significance, using the following data: Sum of squares for X (SSX) = 50 Sum of squares for Y (SSY) = 80BTL -4AnalyzingCO4	10.		* *				
Y1224304050(a). Compute the correlation coefficient. (b). Test its significance at a 5% level. (c). Discuss how this information can be used in engineering design.BTL -4AnalyzingCO411.The slope of a regression line fitted to the relationship between load (X) and deflection (Y) is estimated to be 0.8. Test whether this slope is significantly different from zero at a 5% level of significance, using the following data: Sum of squares for X (SSX) = 50 Sum of squares for Y (SSY) = 80BTL -4AnalyzingCO4		_	-				
(a). Compute the correlation coefficient.(b). Test its significance at a 5% level.(c). Discuss how this information can be used in engineering design.(c). Discuss how this information can be used in engineering design.11.The slope of a regression line fitted to the relationship between load (X) and deflection (Y) is estimated to be 0.8. Test whether this slope is significantly different from zero at a 5% level of significance, using the following data:BTL -4AnalyzingCO4Sum of squares for Y (SSY) = 80BTL -4AnalyzingCO4		X 10	20 30 4	50			
(a). Compute the correlation coefficient.(b). Test its significance at a 5% level.(c). Discuss how this information can be used in engineering design.(c). Discuss how this information can be used in engineering design.11.The slope of a regression line fitted to the relationship between load (X) and deflection (Y) is estimated to be 0.8. Test whether this slope is significantly different from zero at a 5% level of significance, using the following data:BTL -4AnalyzingCO4Sum of squares for Y (SSY) = 80BTL -4AnalyzingCO4		V 12	24 20 4	50			GO (
(b). Test its significance at a 5% level.(c). Discuss how this information can be used in engineering design.(c). Discuss how this information can be used in engineering design.11.The slope of a regression line fitted to the relationship between load (X) and deflection (Y) is estimated to be 0.8. Test whether this slope is significantly different from zero at a 5% level of significance, using the following data:BTL -4AnalyzingCO4CO4Sum of squares for Y (SSY) = 80CO4CO4CO4			24 30 4		BTL-4	Analyzing	CO4
(c). Discuss how this information can be used in engineering design.Image: Constraint of the stope of a regression line fitted to the relationship between load (X) and deflection (Y) is estimated to be 0.8. Test whether this slope is significantly different from zero at a 5% level of significance, using the following data:Image: Constraint of squares for X (SSX) = 50 Sum of squares for Y (SSY) = 80Image: Constraint of Straint		(a). Compute the	e correlation	coefficient.			
11.The slope of a regression line fitted to the relationship between load (X) and deflection (Y) is estimated to be 0.8. Test whether this slope is significantly different from zero at a 5% level of significance, using the following data: Sum of squares for X (SSX) = 50 Sum of squares for Y (SSY) = 80BTL -4AnalyzingCO4		(b). Test its signi	ificance at a	5% level.			
and deflection (Y) is estimated to be 0.8. Test whether this slope is significantly different from zero at a 5% level of significance, using the following data: Sum of squares for X (SSX) = 50 Sum of squares for Y (SSY) = 80 BTL -4 Analyzing CO4		(c). Discuss how	this inform	tion can be used in engineering design.			
significantly different from zero at a 5% level of significance, using the following data: Sum of squares for X (SSX) = 50 Sum of squares for Y (SSY) = 80 BTL -4 Analyzing CO4	11.	1	0	1 , , , ,	Ι Τ		
following data:BTL -4AnalyzingCO4Sum of squares for X (SSX) = 50Sum of squares for Y (SSY) = 80CO4		•	,	-			
Sum of squares for X (SSX) = 50 Sum of squares for Y (SSY) = 80BTL -4AnalyzingCO4			lerent from 2	ero at a 5% level of significance, using the			
Sum of squares for Y (SSY) = 80		_	um of squar	as for X (SSX) = 50		Analyzina	CO4
			-		D1L-4	Anaryzing	04
Sum of products $(SIXI) = +0$			-				
Number of observations $(n) = 10$		N	lumber of ot	servations $(n) = 10$			
Explain the implications for structural analysis.		Explain the impl	lications for	structural analysis.			

12.	Explain the correlation slope and c	in a r correla X	tegres ation s X={2,4	BTL -4	Analyzing	CO4			
13.	The follow random fromASalariA560B490C610D580	ring da om 4 c ies in 1 590 510 580 590	ata sh compa Rs.(E 530 500 590 620	ows th nies 2 mploy 600 480 620 640	he mo A, B, 0 yees) 510 470 550		at BTL -4	Analyzing	CO4
14.	crop under quintals pe Fertilizer A B C Perform a	three r acre Type One-V ignific	differ) is as Yie 15 18 13 Way A cant d	rent fe follo ld (Qu 16 17 17 14	ertilize ws: uintals 14 19 15 7A at a	ment to evaluate the yield of a specifier treatments. The data obtained (in sper Acre) 17 16 20 18 13 14 a 5% level of significance to test if the mean yield across the three	ïc BTL -3	Applying	CO4
15.	-	used.	The f data.	ollow B3		eat and 4 Blocks of three plots of lar ble shows the yield of the 12 plots in		Analyzing	CO4
16. (a)	Given the find the eq					n a simple linear regression analysis ne:	.0 BTL -3	Applying	CO4

		Х	1	2	3	4	5								
	-														
		Y	1.	4	8	2.	10								
	(a). Find	d the	e reg	gres	sioi	n ec	uation	n Y=a	ı+bX	, wh	nere a	is the intercept and			
	b is the					1	L			,		1			
	(b). Inte	rpre	et th	e co	oeff	icie	nts.								
16.(b)	Given the	ne fo	ollo	win	g da	ata	on the	num	ber o	of hou	ırs st	udied (X) and marks			
			· -			-			lysis	to es	stima	te the marks for a			
	student	who	o stu	idies	s fo	r 8	hours:	:							
	X	1		2	3	BTL -3		GO 4							
														Applying	CO4
	Y 35 45 50 60 70														
	(1). Find the equation of the regression line Y=a+bX														
												or 8 hours.			
17.	· · /											on analysis to find			
	the equa		<u>n of</u>	1		ress		lane t	hat p	oredic	ets Y	using X1and X2:			
		X_1	1	2	3	4	5		10	(61					
	-	X_2	2	3	4	5	6								
													BTL -3	Applying	CO4
	Y 3 5 7 9 11														
	(i) Calculate the regression coefficients for $Y=a+b_1X_1+b_2X_2$.														
	(ii). Inte														
18.		rche	r w	ante	to	nre	dict th	e croi	n vie	ld ba	sed (on the amount of			
10.	rainfall														
				ll(X			0	12	14	16	18				
	-	For	+:1:-	zer () 5		6	7	8	9				
		гег	UIII2	zer (Λ 2))]])	0	/	0	9		BTL -3	Applying	CO4
	-	Yie	eld ((Y)			50	55	60	65	70		DIL-5	Apprying	04
	(i) Port	orm	9 m	nulti	inle	lin	ear rea	orecci		nalve	is to	find the equation			
					-			-		•		fertilizer X2.			
	-											ret the results.			
UNIT –\	/: STAT				-						-		<u> </u>		I
					-	-						- Control charts for	attribute	es (p,c and np	
) – Tole														
	1									-	<u> </u>	uestions)	ſ		
1.	What i					•			ol?				BTL -1	Remembering	CO5
2.	Write of					<u> </u>		_					BTL -2	Understanding	CO5
3.	What i				•								BTL -1	Remembering	CO5
4.	What i									ion?			BTL -2	Understanding	CO5
5.	Name							Char	t.				BTL -2	Understanding	CO5
6	Define												BTL -1	Remembering	CO5
7.	Define	pro	oce	ss c	con	tro	l						BTL -1	Remembering	CO5

8	What is cor	ntrol C		?								BTL -2	Understanding	CO5	
9.	Write down				Char	t.						BTL -2	Understanding	CO5	
10	Write down						nplin	g pla	n			BTL -2	Understanding	CO5	
11.	Define OC											BTL -1	Remembering	CO5	
12.	Write down	n type	s of C	Cause	es vai	riatio	n.					BTL -2	Understanding	CO5	
13.	Write the fo											BTL -2	Understanding	CO5	
14.	What is me	ant by	AQ	Lano	d LT	PD						BTL -1	Remembering	CO5	
15.	What is the	form	ula fo	or c c	hart	and p	o cha	rt				BTL -2	Understanding	CO5	
16.	Define Acc	eptan	ce Sa	mpli	ng.							BTL -1	Remembering	CO5	
17.	Explain pro	ducer	s Ris	k an	d Co	nsum	ner Ri	isk.				BTL -2	Understanding	CO5	
18.	Define Tole			BTL -1	Remembering	CO5									
19.	Define one-	-sided	Tole	BTL -1	Remembering	CO5									
20.	Define Two	o-Side	ed To	BTL -1	Remembering	CO5									
21.	What is an	X cha	rt use	BTL -1	Remembering	CO5									
22.	How do you	u inter	rpret	BTL -1	Remembering	CO5									
23.	What is the Control?	purpo	ose o	BTL -2	Understanding	CO5									
24.	How are co	ntrol	limits	s for	an R	char	t dete	ermin	ned?			BTL -2	Understanding	CO5	
25.	What are the main differences between an \overline{X} chart and an R chart?												Understanding	CO5	
	PART-B (16 Mark Questions)														
1.	You are given the value of sample means (\overline{X}) and Range for10 samples of size 5 each. Draw mean chart and comment onthe state of control of the process.Sample123456789910 <th>BTL -3</th> <th>Applying</th> <th>CO5</th>											BTL -3	Applying	CO5	
2.(a)	•		lersta	nd b	y SQ	C. D	iscus	s its	utility	ý	II	BTL -4	Analyzing	CO5	
2.(b)	What do you understand by SQC. Discuss its utility and limitations?The following data give the weight of an automobile part.Five samples of four items each were taken on a random sample basis (at an interval of 1 hour each).Draw the mean Control Chart and find out if the production process is in control.SampleWeight of the parts in ounces11012102101213133101091141110914512121212											BTL -4	Analyzing	CO5	

3.	For a sampling the probability 0.5% defective 2% defective (v and OC curve	y of acc e (ii) 0. v) 4% c	BTL -3	Applying	CO5								
4.(a)	$ \begin{array}{c c} No \\ \hline (\overline{X}) & 1 \end{array} $	1 2 15 17 7 7 values mean ch he state	BTL -3	Applying	CO5								
4.(b)	Explain in deta		BTL -3	Applying	CO5								
5.	10 samples each defectives in the appropriate co	he insp	BTL -4	Analyzing	CO5								
6.	The following range.R for the for central line chart and deter Sample No (\overline{X}) 11	$\begin{array}{c} \text{g data sh} \\ \text{e sampl} \\ \text{e and co} \\ \hline \text{rmine v} \\ \hline 1 & 2 \\ \hline 1.2 & 11.8 \\ \hline 7 & 4 \end{array}$	values range 9 10 0.6 10 7 9	BTL -3	Applying	CO5							
7.	15 tape-record number of defe Draw the appr of control. Unit No (i) No of defects (c)	ects in	BTL -4	Analyzing	CO5								
8.	Construct X c Sample No Observation Also determin	1 32 36 42	2 28 32 40	3 39 52 28	4 50 42 31) 4 2 4 3	5 4	6 50 29 21 ntrol.	7 44 52 35	8 22 35 44	BTL -4	Analyzing	CO5

r																	r
	From the info	ormat	ion	give	n be	low	con	Istru	uct	an	app	rop	oria	ate			
	control chart						-										
	Sample No.(e	each	of	1	2	3	4		5	6	7	8	2	9			
9.	100)						-		2	0	,		, 		BTL -3	Applying	CO5
	No. of defect	ives		12	2 7	9	8	3 1	10	6	7	1	1	8			
	State your con	nclus	sions	. W1	rite a	all th	ne st	teps	s in	the	co	nsti	ruc	ction			
	of the above of	chart	incl	udin	g fo	rmu	la fo	or U	JCI	La	nd L	LCI					
	Construct a C	Contro	ol Cl	hart	for f	ract	ion	def	ect	ive	s (p)- C	ha	rt)			
	for following	data	•						-								
10.	Sample No. 1 2 3 4 5 6 7 8 9 10)	BTL -4	Analyzing	CO5	
	Sample Size		90	65	85	70	80	80	7	09	5	90	75	5			
	No of defectives 9 7 3 2 9 5 3 9 6 7												,				
11.	Explain Cont	trol I	Limi	ts fo	or th	e sa	amp	le 1	me	an	\overline{X} a	nd	sa	mple	BTL -4	A malaurin a	COF
11.	range R. An inspection of 10 samples of size 400 each from 10 lots															Analyzing	CO5
	An inspection of 10 samples of size 400 each from 10 lots																
12.	reveled the following number of defective															Applying	CO5
12.	^{2.} units17,15,14,26,9,4,19,12,9,6															rippijing	005
		Construct R chart for following data															
	Sample Observation																
	No.																
	1				2.2	-		1.9			1.	-					
	2	0.	.8		1.5	1	4	2.1			0.9						
	3		4		1.4	L.					1.						
13.	4	0.			$\frac{0.6}{2.2}$	-	-	0.7	_	-	0.2				BTL -4	Analyzing	CO5
	5	1.			2.3			2.8	<i>_</i>		2.7 0.1						
	6		.8					1.1 1.5			2						
	8		.6	1.				1.5		1.2							
	9	2.	.5	1.6				$\frac{1.8}{0.5}$		2.2							
				Cont			l	0.5			Ζ.,	L					
	Comment on The following					umh	or o	of A	ofo	otir		n 1	0				
	samples each	-	-											ita			
	and also deter						-						uu	iiu			
14	Sample					1		5 15							BTL -3	Applying	
	No.	1	2	3	4	5	5	6	7		8	9		10	DIE 0	, pp. j. mg	CO5
	No of		•						•								
	defectives	24	38	62	34	20	6 3	36	38	3 1	52	33	3	44			
	The following	g dat	a rel	ate t	o the	e nu	mbe	er o	f de	efec	ets i	n e	acl	h of			
	15 units draw	-															
15)	the control ch			•		-				-					BTL -3	Applying	COS
13)	the state of co	ontro	l. Th	e Ui	nits a	are									C- 11 C	Applying	CO5
	6, 4, 9, 10, 11	, 12,	20,	10, 9	9, 10), 15	5, 10), 20	0, 1	5,	10.						

	1 maak	ino	£;11,	a ha	NOG	mit	hd		0* 00	1 1	5	mnl	00.0	f /	hor	100			
	A mach							•				-							
	are drav				•			•				-				e			
	shown													-					
	mean a					ge ai	nd c	leter	rmi	ne w	het	her	the	pro	ces	s is			
	in a stat	te o	f co	ntro	1.														
16.	Sample No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	BTL -4	Analyzing	CO5
		10	10.3	11.5	11	11.3	10.7	11.3	12.3	11	11.3	12.5	11.9	12.1	11.9	10.6			
	Weight of	10.2	10.9	10.7	11.1	11.6	11.4	11.4	12.1	13.1	12.1	11.9	12.1	11.1	12.1	11.9			
	Boxes (X)															11.7			
	()																		
	The fol	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																	
	readings. Draw \overline{X} chart and R chart and write your																		
	-	onclusion.																	
	Sample		•1	2	2 3		4		5	6	7		8	9		10			
			24																
17.	X		34	31		30.8	33	1.3		33.2	33		2.6	33.8		7.8	BTL -3	Applying	CO5
	R		4	4		2	3		5	2	5		13	19		6			
	Samples		11	12	2	13	14		5	16	1'	/	18	19		20			
	X		35.8	38	.4	34	35	38	8.8	31.6	33	3 2	8.2	31.8	8 3	5.6			
	R		4	4		14	4		7	5	5		3	9		6			
	(Giv	ven	for	n =	$n = 5 \text{ are } A_2 = 0.58 D_3 = 0, D_4 = 2.12)$														
	The follo		-	-			-					-		samj	ples	of			
	100 item			once								cor							
		mple				ze of				nber	-		actic						
	Nu	$\frac{\text{mbe}}{1}$	r			mple 100	2	-	Def	ectiv	-		fecti	ve					
		$\frac{1}{2}$				100				5 3				.05 .03					
		3				100				3				.03					
18.		4				00				6				.06			BTL -3	Applying	CO5
		5				00				5				.05					
	-	6			1	00				6				.06					
		7			1	00				8				.08					
		8			1	00				10			.10						
		9				00				10			.10						
		10]	00				4				.04					
	Constru	ct a	p- cł	nart.															
