### SRM VALLIAMMAI ENGINEERING COLLEGE (An Autonomous Institution)

#### S.R.M. Nagar, Kattankulathur - 603203

### **DEPARTMENT OF MATHEMATICS**

**QUESTION BANK** 



### IV SEMESTER (Common to MDE)

### MA3427 - APPLIED MATHEMATICS FOR BIO-MEDICAL ENGINEERING Regulation – 2023

**Academic Year - 2024 - 2025** 

Prepared by

Dr. Bhooma S, Assistant Professor / Mathematics



# SRM VALLIAMMAI ENGNIEERING COLLEGE (An Autonomous Institution) SRM Nagar, Kattankulathur – 603203.



### **DEPARTMENT OF MATHEMATICS**

### SUBJECT: MA3427 - APPLIED MATHEMATICS FOR BIOMEDICAL ENGINEERING

### SEM / YEAR: IV / II year B.E. (Common to MDE)

#### **UNIT I - PROBABILITY AND RANDOM VARIABLES**

Axioms of probability – Conditional Probability-Discrete and continuous random variables – Moments – Moment generating functions

| Q.No. |                                                                 |             | Q            | uestion       |            | No.              |             |         |    | BT<br>Level | Competence    | Course<br>Outcome |
|-------|-----------------------------------------------------------------|-------------|--------------|---------------|------------|------------------|-------------|---------|----|-------------|---------------|-------------------|
|       |                                                                 |             |              | 100           | I          | PART             | – A         |         |    |             |               |                   |
| 1.    | Define Probabili                                                | ty.         | 1            | 39            | 1          |                  | _           | 20      |    | BTL-1       | Remembering   | CO 1              |
| 2.    | Write the axioms                                                | s of Pro    | obabili      | ity.          | 81         | MF               |             | °.      |    | BTL-1       | Remembering   | CO 1              |
| 3.    | What is the probability will contain 53 T                       |             |              | non-lea       | p year     | select           | ed at       | random  | 1  | BTL-1       | Remembering   | CO 1              |
| 4.    | If A and B are e<br>and $P(A \cup B) =$                         |             |              |               |            |                  |             | ) = 1/4 | 4  | BTL-2       | Understanding | CO 1              |
| 5.    | Define Moment                                                   |             |              |               |            |                  |             | ble.    |    | BTL-1       | Remembering   | CO 1              |
| 6.    | If a random varia<br>mean of X.                                 | able X      | has th       | e MGF l       | $M_X(t)$   | $=\frac{2}{2-t}$ | . Finc      | l the   |    | BTL-2       | Understanding | CO 1              |
| 7.    | Show that the fundemative density function                      |             |              | (0)           |            | •                |             | oility  |    | BTL-2       | Understanding | CO 1              |
| 8.    | Find the Momen<br>variable X whose                              | t genei     | rating       | function      | ofac       | ontinu           |             | andom   |    | BTL-2       | Understanding | CO 1              |
| 9.    | Define discrete a                                               | nd cor      | ntinuo       | us randoi     | m var      | iables           | with e      | exampl  | es | BTL-1       | Remembering   | CO 1              |
| 10.   | The number of h<br>week of operatio<br>of K.<br>No. of failures | ns has<br>0 | the fo       | llowing       | p.d.f,     | Calcul           | late th     | e value |    | BTL-2       | Understanding | CO 1              |
|       | Probability                                                     | K           | 2 K          | 2 K           | K          | 3 K              | K           | 4 K     |    |             |               |                   |
| 11.   | A random variab                                                 |             | as foll<br>1 | owing pi<br>2 | robab<br>3 | ility di         | stribu<br>4 | tion.   | _  | BTL-2       | Understanding | CO 1              |

|     | P(x)                                                          | 0.4K 0.3                                                             | 3K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.2K               | 0.1K        |               |       |               |      |
|-----|---------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------|---------------|-------|---------------|------|
|     | Find K.                                                       |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |             |               |       |               |      |
| 12. | The pdf of a continue $k(1+x), 2 < x < 5$                     |                                                                      | variabl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | e X is f           | (x) =       |               | BTL-2 | Understanding | CO 1 |
| 13. | For a continuous dist<br>where $k$ is a constant              |                                                                      | (x) = k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $(x-x^2)$          | $0,0\leq x$ | ≤ 1,          | BTL-2 | Understanding | CO 1 |
| 14. | If $f(x) = kx^2$ , $0 < x$<br>value of $k$ .                  | $\alpha < 3$ , is to 1                                               | be a de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nsity fun          | ction, fi   | nd the        | BTL-2 | Understanding | CO 1 |
| 15. | If the pdf of a RV is                                         | $f(x) = \frac{x}{2}, 0$                                              | $\leq x \leq$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2, find            | P(X > 1)    | 1.5).         | BTL-2 | Understanding | CO 1 |
| 16. | If X is a CRV with p<br>pdf of the RV $Y = 82$                |                                                                      | ÷ 2 <i>x</i> , 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | < <i>x</i> < 1     | , then fir  | nd the        | BTL-2 | Understanding | CO 1 |
| 17. | If X and Y are independent the variance of 3X +               |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ariances           |             | Find          | BTL-2 | Understanding | CO 1 |
| 18. | If the RV X takes the<br>=2) =P ( X =3 ) = 5 H                |                                                                      | , 3, 4 si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | uch that           | 2P(X=1)     |               | BTL-2 | Understanding | CO 1 |
| 19. | The first four momer<br>45 respectively. Show                 | 1.4                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Section.           |             | 1.00          | BTL-2 | Understanding | CO 1 |
| 20. | If X is a normal rand<br>find the probability the             |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    | nd varian   | ice 9,        | BTL-2 | Understanding | CO 1 |
| 21. | If a RV has the pdf f                                         | $(\mathbf{x}) = \begin{cases} 2e^{-2\mathbf{x}} \\ 0, f \end{cases}$ | $\frac{1}{100} \frac{1}{100} \frac{1}$ | > 0<br>0 , fino    | d the me    | an of X       | BTL-1 | Remembering   | CO 1 |
| 22. | A continuous randor 1. Find $(X > 0.5)$ .                     | n variable X                                                         | K has p.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\mathrm{d.f}f(x)$ | = 2x, 0     | $\leq x \leq$ | BTL-2 | Understanding | CO 1 |
| 23. | Check whether the for<br>4, 5 can serve as the p<br>variable. |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2                  |             |               | BTL-1 | Remembering   | CO 1 |
| 24. | If a RV has the proba find the probabilities                  |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ( ),               |             |               | BTL-2 | Understanding | CO 1 |
| 25. | If the MGF of a cont distribution of X? W                     |                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |             |               | BTL-2 | Understanding | CO 1 |
|     |                                                               |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PAR                | Г – В       |               |       |               |      |
| 1.  | The Probability distr<br>$f(x) = \frac{4x(9-x^2)}{81},$       |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | a R.V. X           | K is give   | n by          | BTL-3 | Applying      | CO 1 |
| 2.  | Find the MGF, mea<br>which has the pdf                        | n and varia                                                          | nce of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | the rand           | dom var     | iable X       | BTL-3 | Applying      | CO 1 |
|     | which has the pdf                                             |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |             |               |       |               |      |

|               | (n - 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u> </u> |           |      |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------|------|
|               | $f(x) = \begin{cases} x, \ 0 < x < 1\\ 2 - x, \ 1 < x < 2 \end{cases}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |           |      |
|               | 0, otherwise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |           |      |
| 3.            | A random variable X has the following probability distribution:<br>$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                             | BTL-3    | Applying  | CO 1 |
| 4.            | The probability mass function of a discrete R. V X is given in the<br>following table: $X$ -2-10123 $P(X=x)$ 0.1k0.22k0.3k(1) Find the value of k, (2) P(X<1), (3) P(-1< X $\leq 2$ ), (4) E(X)                                                                                                                                                                                                                                                                                                                                       | BTL-3    | Applying  | CO 1 |
| 5.            | A test engineer discovered that the CDF of the lifetime of an equipment in years is given by $F_X(x) = \begin{cases} 0, x < 0 \\ 1 - e^{-\frac{x}{5}}, 0 \le x < \infty \end{cases}$ .<br>(i) What is the expected lifetime of the equipment? (ii) What is the variance of the lifetime of the equipment?                                                                                                                                                                                                                             | BTL-3    | Applying  | CO 1 |
| 6.            | A student doing a summer internship in a company was asked<br>to model the lifetime of certain equipment that the company<br>makes. After a series of tests, the student proposed that the<br>lifetime of the equipment can be modeled by a random variable<br>X that has the PDF $f(x) = \begin{cases} \frac{xe^{-x/10}}{100}, & x \ge 0\\ 0, & otherwise \end{cases}$ (i) Show that $f(x)$ is<br>a valid PDF. (ii) What is the probability that the lifetime of the<br>equipment exceeds 20? (iii) What is the expected value of X? | BTL-3    | Applying  | CO 1 |
| 7.            | The probability mass function of a discrete R. V X is given in the following table<br>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                           | BTL-3    | Applying  | CO 1 |
| 8.            | The probability mass function of a RV X is given by $P(X = r) = kr^3$ , $r = 1,2,3,4$ . Find (1) the value of k, (2) $P(\frac{1}{2} < X < \frac{5}{2}/X > 1)$ , (3) Mean and (4) Variance.                                                                                                                                                                                                                                                                                                                                            | BTL-3    | Applying  | CO 1 |
| 9.            | If $f(x) = \begin{cases} ax, \ 0 \le x \le 1\\ a, \ 1 \le x \le 2\\ 3a - ax, \ 2 \le x \le 3\\ 0, \ elsewhere \end{cases}$ is the pdf of X.<br>Calculate (i) the value of a , (ii) the cumulative distribution function of X                                                                                                                                                                                                                                                                                                          | BTL -4   | Analyzing | CO 1 |
| <b>10(a).</b> | Two events <i>A</i> and <i>B</i> are such that $P[A \cap B] = 0.15$ , $P[A \cup B] = 0.65$ , and $P[A B] = 0.5$ . Find $P[B A]$ .                                                                                                                                                                                                                                                                                                                                                                                                     | BTL-3    | Applying  | CO 1 |
| 10(b).        | If the discrete random variable X has the probability function given by the table.                                                                                                                                                                                                                                                                                                                                                                                                                                                    | BTL-3    | Applying  | CO 1 |

|                        | x 1 2 3 4                                                                                                                             |        |                                       |      |
|------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--------|---------------------------------------|------|
|                        | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                 |        |                                       |      |
|                        | Find the value of k and Cumulative distribution of X.                                                                                 |        |                                       |      |
|                        | Let X be a continuous R.V with probability density function                                                                           |        |                                       |      |
|                        | $f(x) = \begin{cases} xe^{-x}, & x > 0\\ 0, & otherwise \end{cases},$                                                                 |        |                                       |      |
| 11.                    | $\begin{bmatrix} 0 & , & otherwise \end{bmatrix}$                                                                                     | BTL-4  | Analyzing                             | CO 1 |
|                        | Find (1) The cumulative distribution of X, (2) Moment Generating                                                                      |        |                                       |      |
|                        | Function $M_X(t)$ of X, (3) P(X<2) and (4) E(X)<br>The probability distribution of an infinite discrete distribution is               |        |                                       |      |
| 12.                    | given by P[X = j] = $\frac{1}{2^j}$ (j = 1,2,3) Find (1) Mean of X, (2) P [X is                                                       | BTL-4  | Analyzing                             | CO 1 |
| 12.                    | even], (3) P(X is odd).                                                                                                               |        | 7 mary 2mg                            | 001  |
|                        | The probability density function of a random variable X is given                                                                      |        |                                       |      |
|                        | ( x, 0 < x < 1)                                                                                                                       |        |                                       |      |
|                        | by $f(x) = \begin{cases} x, 0 < x < 1 \\ k(2-x), 1 \le x \le 2 \end{cases}$ (i) Find the value of k<br>0. otherwise                   |        | A                                     |      |
| 13.                    | 0, otherwise                                                                                                                          | BTL -4 | Analyzing                             | CO 1 |
|                        | (ii) P (0.2 <x<1.2) (iii)="" 1.5="" <="" <math="" is="" p[0.5="" what="" x=""  ="">x \ge 1] (iv) Find</x<1.2)>                        |        |                                       |      |
|                        | the distribution function of $f(x)$ .                                                                                                 |        |                                       |      |
|                        | If X is a discrete random variable with probability function                                                                          |        |                                       |      |
|                        |                                                                                                                                       |        |                                       |      |
| 14.                    | $p(x) = \frac{1}{K^x}$ , x = 1,2 (K constant) then find the moment                                                                    | BTL -3 | Applying                              | CO 1 |
|                        | generating function, mean and variance.                                                                                               |        |                                       |      |
|                        | $\left(\frac{1}{2}e^{-\frac{x}{2}}\right)$ $x > 0$                                                                                    |        |                                       |      |
| 15.                    | Let the random variable X has the p.d.f. $f(x) = \begin{cases} \frac{1}{2}e^{-\frac{x}{2}}, x > 0\\ 0, \text{ otherwise} \end{cases}$ | BTL -3 | Applying                              | CO 1 |
|                        | Find the mean and variance.                                                                                                           | 212 0  |                                       | 001  |
|                        | Find the mean & variance of the probability distribution                                                                              |        |                                       |      |
| 16.                    | X <sub>i</sub> 1 2 3 4 5 6 7 8                                                                                                        | BTL -3 | Applying                              | CO 1 |
| 10.                    | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                               | DIL-3  | Applying                              |      |
|                        | Two events A and B have the following probabilities: $P[A] =$                                                                         |        |                                       |      |
| <b>17(a).</b>          | 1/4, $P[B A] = 1/2$ , and $P[A B] = 1/3$ . Compute (a) $P[A \cap B]$ , (b)                                                            | BTL -3 | Applying                              | CO 1 |
|                        | $P[B]$ , and (c) $P[A \cup B]$ .                                                                                                      |        | rr-J8                                 |      |
|                        | Two events A and B have the following probabilities: $P[A] =$                                                                         |        |                                       | CO 1 |
| 17(b).                 | 0.6, $P[B] = 0.7$ , and $P[A \cap B] = p$ . Find the range of values that                                                             | BTL -3 | Applying                              |      |
|                        | $p \operatorname{can} \operatorname{take}.$                                                                                           |        |                                       |      |
| <b>18</b> (a).         | If a random variable X has p.d.f $f(x) = \begin{cases} \frac{1}{4}, &  X  < 2\\ 0, & Otherwise \end{cases}$                           | BTL -3 | Applying                              | CO 1 |
| <b>_</b> ( <b>u</b> ). | Find (a) $P(X < 1)$ (b) $P( X  > 1)$ (c) $P(2X + 3 > 5)$ .                                                                            | 212 0  | · · · · · · · · · · · · · · · · · · · |      |
|                        | If X is a continuous r.v. with p.d.f                                                                                                  |        |                                       |      |
| <b>18(b).</b>          | $f(x) = \begin{cases} A(2x - x^2), & 0 < x < 2\\ 0, & Otherwise \end{cases}$                                                          | BTL -3 | Applying                              | CO 1 |
|                        |                                                                                                                                       |        | · -r r · J · · · 8                    |      |
|                        | Find A and P(X>1).                                                                                                                    |        |                                       |      |

# **UNIT-II TWO - DIMENSIONAL RANDOM VARIABLES** Joint distributions – Marginal and conditional distributions – Covariance – Correlation and linear regression

| Q.No. | Question                                                                                                                                                                                                                           | BT<br>Level | Competence    | Course<br>Outcome |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------|-------------------|
|       | PART – A                                                                                                                                                                                                                           |             |               |                   |
| 1.    | The joint probability distribution of X and Y is given by<br>$p(x, y) = \frac{x + y}{21}$ ,<br>x = 1,2,3; y = 1, 2. Find the marginal probability<br>distributions of X and Y.                                                     | BTL-2       | Understanding | CO 2              |
| 2.    | The joint probability function (X,Y) is given by $P(x,y) = k(2x + 3y)$ ,<br>x = 0,1,2 $y = 1,2,3$ , Find the value of K.                                                                                                           | BTL-2       | Understanding | CO 2              |
| 3.    | Find the probability distribution of X + Y from the bivariate<br>distribution of (X,Y) given below: $X$ Y1210.40.220.30.1                                                                                                          | BTL-2       | Understanding | CO 2              |
| 4.    | If the joint pdf of X and Y is given by $f(x,y)=2$ , in $0 \le x \le y \le 1$ ,<br>Find $E(XY)$                                                                                                                                    | BTL-1       | Remembering   | CO 2              |
| 5.    | Find the marginal distributions of X and Y from the<br>bivariate distribution of (X,Y) given below: $X 	 Y 	 1 	 2$ 1 	 0.1 	 0.22 	 0.3 	 0.4                                                                                     | BTL-2       | Understanding | CO 2              |
| 6.    | Find the value of k, if the joint density function of (X,Y) is<br>$f(x, y) = \begin{cases} k(1-x)(1-y), 0 < x < 4, 1 < y < 5\\ 0, otherwise \end{cases}$                                                                           | BTL-1       | Remembering   | CO 2              |
| 7.    | If the joint probability density function of a random variable<br>X and Y is given by $f(x, y) = \begin{cases} \frac{x^3y^3}{16}, 0 < x < 2, 0 < y < 2\\ 0, & otherwise \end{cases}$<br>Obtain the marginal density function of X. | BTL-1       | Remembering   | CO 2              |
| 8.    | The joint pdf of the random variable (X,Y) is given by $f(x, y) = Kxye^{-(x^2+y^2)}, x > 0, y > 0$ Find the value of K.                                                                                                            | BTL-1       | Remembering   | CO 2              |
| 9.    | The joint probability density function of a random variable $(X, Y)$ is $f(x, y) = k e^{-(2x+3y)}, x \ge 0, y \ge 0$ . Point out the value of <i>k</i> .                                                                           | BTL-2       | Understanding | CO 2              |
| 10.   | If the joint pdf of (X, Y) is $f(x, y) = \begin{cases} \frac{1}{4}, 0 < x, y < 2\\ 0, otherwise \end{cases}$ .<br>Find $P(X + Y \le 1)$                                                                                            | BTL-1       | Remembering   | CO 2              |
| 11.   | Let X and Y be random variables with joint density function<br>$f(x,y) = \begin{cases} 4xy, & 0 < x < 1, & 0 < y < 1 \\ 0, & otherwise \end{cases}$ formulate the value of<br>E(XY)                                                | BTL-2       | Understanding | CO 2              |

| 12. | Let the joint density function of a random variable X and Y be given by $f(x, y) = 8xy$ , $0 < y \le x \le 1$ .Calculate the marginal probability function of X                                                                                      |        | Remembering   | CO 2 |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------|------|
| 13. | What is the condition for two random variables are independent?                                                                                                                                                                                      | BTL-2  | Understanding | CO 2 |
| 14. | If the joint probability density function of X and Y is $f(x,y) = e^{-(x+y)}, x, y \ge 0$ . Are X and Y independent                                                                                                                                  | BTL-1  | Remembering   | CO 2 |
| 15. | State any two properties of correlation coefficient                                                                                                                                                                                                  | BTL-2  | Understanding | CO 2 |
| 16. | Write the angle between the regression lines                                                                                                                                                                                                         | BTL-1  | Remembering   | CO 2 |
| 17. | The regression equations are $x + 6y = 14$ and $2x + 3y = 1$ .<br>Evaluate the correlation coefficient between X & Y.                                                                                                                                | BTL-1  | Remembering   | CO 2 |
| 18. | If $\overline{X} = 970$ , $\overline{Y} = 18$ , $\sigma_x = 38$ , $\sigma_y = 2$ and $r = 0.6$ , Find the line of regression of X on Y.                                                                                                              | BTL-2  | Understanding | CO 2 |
| 19. | In a partially destroyed laboratory, record of an analysis of correlation data, the following results only are legible:<br>Variance of $X = 9$ ; Regression equations are $8X - 10Y + 66 = 0$ and $40X-18Y = 214$ . Find the mean values of X and Y? |        | Remembering   | CO 2 |
| 20. | The regression equations are $3x + 2y = 26$ and $6x + y = 31$ .<br>Find the correlation coefficient.                                                                                                                                                 | BTL-2  | Understanding | CO 2 |
| 21. | Let X and Y have the joint p.m.f<br>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                            | BTL -1 | Remembering   | CO 2 |
| 22. | Define the conditional distribution function of two dimensional discrete and continuous random variables.                                                                                                                                            | BTL -1 | Remembering   | CO 2 |
| 23. | The equations of two regression lines are $3x+2y=19$ and $3y+9x=46$ . Obtain the mean of X and Y.                                                                                                                                                    | BTL-1  | Remembering   | CO 2 |
| 24. | The equations of two regression lines are $3x+2y=19$ and $3y+9x=46$ . Derive the correlation coefficient between X and Y.                                                                                                                            |        | Remembering   | CO 2 |
| 25. | State the equations of two regression lines.                                                                                                                                                                                                         | BTL-2  | Understanding | CO 2 |
| l   | PART – B                                                                                                                                                                                                                                             | 1      |               |      |
| 1.  | From the following table for bivariate distribution of $(X, Y)$ .                                                                                                                                                                                    | BTL-2  | Understanding | CO 2 |
|     | Find (i) $P(X \le 1)$ (ii) $P(Y \le 3)$ (iii) $P(X \le 1, Y \le 3)$<br>(iv) $P(X \le 1/Y \le 3)$ (v) $P(Y \le 3/X \le 1)$ (vi) $P(X + Y \le 4)$<br>Y<br>X<br>1 2 3 4 5<br>X<br>1 2 2 2                                                               |        |               |      |
|     | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                |        |               |      |
|     | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                |        |               |      |

|       | $2 \frac{1}{2}$                                                                                                                                                                                                                                                                                                            | 1                                                      | 1                                              | 0                   | $\frac{2}{64}$ |               |      |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------|---------------------|----------------|---------------|------|
|       | $2$ $\overline{32}$ $\overline{32}$                                                                                                                                                                                                                                                                                        | 64                                                     | 64                                             |                     | 64             |               |      |
| 2.(a) | The two dimensional rando<br>probability mass function<br>0,1,2. Find the marginal dist<br>the conditional distribution of<br>X = 1 also find the condition                                                                                                                                                                | $f(x, y) = \frac{2}{3}$<br>tributions of<br>of Y given | $\frac{x+2y}{27}$ , $x = \frac{1}{2}$ X and Y. | 0,1,2; y =Also find | BTL-3          | Applying      | CO 2 |
| 2.(b) | The joint pdf a bivariate R.V<br>$f(x, y) = \begin{cases} Kxy \\ 0 \end{cases},$ (1) Find K. (2) Find P<br>independent R.V's.                                                                                                                                                                                              | V(X, Y)  is given  0 < x < 1,                          | ven by<br>0 < y < 1<br>therwise                | L                   | BTL-3          | Applying      | CO 2 |
| 3.(a) | If the joint pdf of $(X, Y)$ is g<br>1, 2, 3,<br>y = 1, 2, 3 Find all the margination find the probability distribute                                                                                                                                                                                                      | nal probabil                                           | ity distribu                                   | •                   | BTL-3          | Applying      | CO 2 |
| 3.(b) | The joint pdf of the RV<br>$kxye^{-(x^2+y^2)}$ ,<br>x > 0, y > 0. Find the valu<br>are independent                                                                                                                                                                                                                         | (X,Y) is g                                             | given by                                       | and a               | BTL-4          | Analyzing     | CO 2 |
| 4.    | The following table rep<br>distribution of the discrete $T$<br>and conditional distributions<br>$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                                                                                                                                                                       | RV ( <mark>X,Y</mark> ). F                             |                                                |                     | BTL-2          | Understanding | CO 2 |
| 5.    | S       1/18       1/4       2/13         Find the marginal distrib $P(P(X \le 1, Y \le 1), P(X \le 1), P(Y \le 1))$ . Che independent. The joint probis       Che independent. The joint probis         Y       0       1         Q       0.10       0.04         1       0.08       0.20         2       0.06       0.14 | ck whether                                             | X and                                          | Y are               | BTL-2          | Understanding | CO 2 |
| 6.    | The joint pdf of two dimensions<br>given by<br>$f(x, y) = \begin{cases} 25e^{-5y}, 0 < x < 0.2, y > \\ 0, otherwise \end{cases}$                                                                                                                                                                                           | sional randor                                          |                                                |                     | BTL-4          | Analyzing     | CO 2 |

| 7.  | If the joint pdf of a two-dimensional $RV(X,Y)$ is give                                                               | BTL-3 | Applying      | CO 2 |
|-----|-----------------------------------------------------------------------------------------------------------------------|-------|---------------|------|
|     | n by $(2 + \frac{xy}{y}) = (1 + 1)$                                                                                   |       |               |      |
|     | $f(x,y) = \begin{cases} x^2 + \frac{xy}{3}; 0 < x < 1, 0 < y < 2\\ 0, elsewhere \end{cases}$ . Find (i) $P(X > 0)$    |       |               |      |
|     |                                                                                                                       |       |               |      |
|     | $\left(\frac{1}{2}\right)$                                                                                            |       |               |      |
|     | (ii) $P(Y < \frac{1}{2}, X < \frac{1}{2})$ (iii) $P\left(Y < \frac{1}{2} / X < \frac{1}{2}\right)$                    |       |               |      |
| 8.  | The joint pdf of a two dimensional random variable (X, Y) is                                                          | BTL-3 | Applying      | CO 2 |
|     | given by                                                                                                              |       |               |      |
|     | $f(x, y) = xy^2 + \frac{x^2}{8}, 0 \le x \le 2, 0 \le y \le 1$ . Compute                                              |       |               |      |
|     | (i) $P(X > 1 / Y < \frac{1}{2})$ (ii) $P(Y < \frac{1}{2}/X > 1)$ (iii) $P(X + \frac{1}{2})$                           |       |               |      |
|     | $Y \leq 1.$                                                                                                           |       |               |      |
| 9.  | (b)The joint pdf of X and Y is given by                                                                               | BTL-3 | Applying      | CO 2 |
|     | (kx(x-y), 0 < x < 2, -x < y < x)                                                                                      |       |               |      |
|     | $f(x,y) = \begin{cases} kx(x-y), 0 < x < 2, -x < y < x \\ 0, & otherwise \end{cases}$                                 |       |               |      |
|     | (i)Find K (ii) Find $f_x(x)$ and $f_y(y)$                                                                             |       |               |      |
| 10. | Find the Coefficient of Correlation between industrial                                                                | BTL-2 | Understanding | CO 2 |
|     | production and export using the following table                                                                       |       |               |      |
|     | Production (X) 14 17 23 21 25                                                                                         |       |               |      |
| 11  | Export (Y) 10 12 15 20 23                                                                                             |       | TT 1 / 1'     |      |
| 11. | Find the correlation coefficient for the following heights of                                                         | BTL-2 | Understanding | CO 2 |
|     | fathers X, their sons Y and also find the equations of regression lines. Hence find the height of son when the height |       |               |      |
|     | of father is 71                                                                                                       |       |               |      |
|     | X 65 66 67 67 68 69 70 72                                                                                             |       |               |      |
|     | Y         67         68         65         68         72         72         69         71                             |       |               |      |
| 12. | Obtain the lines of regression                                                                                        | BTL-2 | Understanding | CO 2 |
|     | X 50 55 50 60 65 65 65 60 60                                                                                          |       | -             |      |
|     | Y         11         14         13         16         16         15         15         14         13                  | -     |               |      |
| 13. | If $f(x,y) = \frac{6-x-y}{8}$ , $0 \le x \le 2$ , $2 \le y \le 4$ for a bivariate                                     | BTL-3 | Applying      | CO 2 |
|     | random variable (X,Y), Evaluate the correlation coefficient                                                           |       |               |      |
|     | $\rho$ .                                                                                                              |       |               |      |
| 14. | Two random variables X and Y have the joint density function                                                          | BTL-4 | Analyzing     | CO 2 |
|     | $f(x, y) = x + y, 0 \le x \le 1, 0 \le y \le 1.$                                                                      |       |               |      |
|     | Evaluate the Correlation coefficient between X and Y.                                                                 |       |               |      |
| 15  | The two regression lines are $4x-5y+33=0$ and $20x-9y=107$ .                                                          | BTL-3 | Applying      | CO 2 |
|     | Find the mean of X and Y. Also find the correlation                                                                   |       |               |      |
| 10  | coefficient between them                                                                                              |       | Analysian     | CO 2 |
| 16. | From the following data , Find (i)The two regression                                                                  | BTL-4 | Analyzing     | CO 2 |
|     | equations (ii) The coefficient of correlation between the                                                             |       |               |      |
|     | marks in Mathematics and Statistics (iii) The most likely                                                             |       |               |      |
|     | marks in Statistics when marks in Mathematics are 30                                                                  |       |               |      |
|     | Marks in Maths : 25 28 35 32 31 36 29 38 34 32                                                                        |       |               |      |
|     | Marks in Statistics: 43 46 49 41 36 32 31 30 33 39                                                                    |       |               |      |
|     | Warks in Statistics: 45 46 49 41 56 52 51 50 33 39                                                                    |       |               |      |

| 17.(a) | If X and Y independent Random Variables with pdf                                                                       | BTL-4 | Analyzing | CO 2 |
|--------|------------------------------------------------------------------------------------------------------------------------|-------|-----------|------|
|        | $e^{-x}$ , $x \ge 0$ and $e^{-y}$ , $y \ge 0$ . Devise the density function of                                         |       |           |      |
|        | $U = \frac{X}{X+Y}$ and $V = X+Y$ . Are they independent?                                                              |       |           |      |
| 17.(b) | Two random variables X and Y have the following joint                                                                  | BTL-3 | Applying  | CO 2 |
|        | probability density function $f(x, y) =$                                                                               |       |           |      |
|        | $\begin{cases} x + y; 0 \le x \le 1, 0 \le y \le 1 \\ 0, \text{ otherwise} \end{cases}$ . Find the probability density |       |           |      |
|        | function of the random variable $U = XY$ .                                                                             |       |           |      |
| 18     | Out of the two lines of regression given by $x + 2y - 5 = 0$                                                           | BTL-4 | Analyzing | CO 2 |
|        | and $2x + 3y - 8 = 0$ , which one is the regression line of X                                                          |       |           |      |
|        | on Y? Analyze the equations to find the means of X and Y. If                                                           |       |           |      |
|        | the variance of X is 12, find the variance of Y.                                                                       |       |           |      |

| Q.No. | Question                                                                                                                                                                                                             | BT<br>Level | Competence    | Course<br>Outcome |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------|-------------------|
|       | PART – A                                                                                                                                                                                                             |             |               |                   |
| 1.    | What are the four types of a stochastic process?                                                                                                                                                                     | BTL-1       | Remembering   | CO3               |
| 2.    | Define Discrete Random sequence with example.                                                                                                                                                                        | BTL-1       | Remembering   | CO3               |
| 3.    | Define Discrete Random Process with example.                                                                                                                                                                         | BTL-1       | Remembering   | CO3               |
| 4.    | Define Continuous Random sequence with example.                                                                                                                                                                      | BTL-1       | Remembering   | CO3               |
| 5.    | Define Continuous Random Process with example.                                                                                                                                                                       | BTL-1       | Remembering   | CO3               |
| 6.    | Define wide sense stationary process.                                                                                                                                                                                | BTL-1       | Remembering   | CO3               |
| 7.    | Define Strict Sense Stationary Process.                                                                                                                                                                              | BTL-1       | Remembering   | CO3               |
| 8.    | Show that the random process $X(t) = A\cos(\omega_c t + \theta)$ is not stationary if it is assumed that A and $\omega_c$ are constants and $\theta$ is a uniformly distributed variable on the interval $(0,\pi)$ . | BTL-2       | Understanding | CO3               |
| 9.    | A random process X (t) = A sin $t$ + B cos $t$ where A and B are<br>independent random variables with zero means and equal<br>standard deviations. Find the mean of the process.                                     | BTL-1       | Remembering   | CO3               |
| 10.   | Consider the random process X ( <i>t</i> ) = cos (t + $\phi$ ), where $\phi$ is uniform random variable in $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ . Check whether the process is stationary.                   | BTL-2       | Understanding | CO3               |
| 11.   | Consider the random process X ( $t$ ) = $cos (\omega_0 t + \theta)$ , where $\theta$ is<br>uniform random variable in $(-\pi, \pi)$ . Check whether the<br>process is stationary or not                              | BTL-1       | Remembering   | CO3               |

|     |                                                                                                                 | DTI 2    | I Indonaton din o | 002        |
|-----|-----------------------------------------------------------------------------------------------------------------|----------|-------------------|------------|
|     | Find the mean of a stationary random process whose auto                                                         | BTL-2    | Understanding     | CO3        |
| 12. | correlation function is given by $R_{(Z)} = \frac{25Z^2 + 36}{6.25Z^2 + 4}$ .                                   |          |                   |            |
|     |                                                                                                                 |          |                   |            |
| 13. | Find the mean of a stationary random process whose auto                                                         | BTL-2    | Understanding     | CO3        |
| 15. | correlation function is given by $R_{XX}(\tau) = 18 + \frac{2}{6+\tau^2}$ .                                     |          |                   |            |
|     | A random process has the autocorrelation function $R_{xx}(\tau) =$                                              | BTL-2    | Understanding     | CO3        |
| 14. | $\frac{4\tau^2+6}{\tau^2+1}$ , find the mean square value of the problem.                                       |          |                   |            |
|     | $\tau^2+1$ , find the mean square value of the problem.                                                         |          |                   |            |
|     | Compute the mean value of the random process whose auto                                                         | BTL-2    | Understanding     |            |
| 15. | correlation function is given by $R_{XX}(\tau) = 25 + \frac{4}{1+6\tau^2}$ .                                    |          | C                 | CO3        |
| 16. | Define Poisson process.                                                                                         | BTL-1    | Remembering       | CO3        |
|     | State and two properties of Poisson process.                                                                    | BTL-1    | Remembering       | CO3        |
| 17. | State and two properties of rollsson process.                                                                   | 2121     |                   | 005        |
|     | Check whether the Poisson process $X(t)$ given by the                                                           | BTL-1    | Remembering       | CO3        |
| 10  | probability law                                                                                                 |          |                   |            |
| 18. | $P\{X(t) = n\} = \frac{e^{-\lambda t} (\lambda t)^n}{n!}, n = 0, 1, 2, \dots$ is stationary or not.             |          |                   |            |
|     | n!                                                                                                              |          |                   |            |
|     | A hospital receives on an average of 3 emergency calls in 10                                                    | BTL-2    | Understanding     | CO3        |
| 19. | minutes interval. What is the probability that there are 3                                                      |          |                   |            |
|     | emergency calls in a 10 minute interval                                                                         |          |                   |            |
| 20. | Define Markov chain                                                                                             | BTL-1    | Remembering       | $CO^{2}$   |
|     | A random process is defined by $X(t) = K \cos \omega t$ , $t \ge 0$                                             | BTL-1    | Remembering       | CO3<br>CO3 |
| 21. | where $\omega$ is a constant and K is uniformly distributed between                                             | DILI     | Remembering       | 005        |
|     | 0 and 2. Determine $E[X(t)]$ .                                                                                  |          |                   |            |
|     | Consider the Markov chain with 2 states and transition                                                          | BTL-1    | Remembering       | CO3        |
|     | $\begin{bmatrix} \underline{3} & \underline{1} \end{bmatrix}$                                                   |          |                   |            |
| 22. | probability matrix $P = \begin{bmatrix} \frac{3}{4} & \frac{1}{4} \\ 1 & 1 \end{bmatrix}$ . Find the stationary |          |                   |            |
|     | $\left\lfloor \frac{1}{2}  \frac{1}{2} \right\rfloor$                                                           |          |                   |            |
|     | probabilities of the chain.                                                                                     |          |                   |            |
|     | The one-step transition probability matrix of a Markov chain                                                    | BTL-2    | Understanding     | CO3        |
|     | with states (0,1) is given by $P = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ Evaluate whether it            |          |                   |            |
| 23. | $\begin{bmatrix} 1 & 0 \end{bmatrix}$                                                                           |          |                   |            |
|     | is irreducible Markov chain?                                                                                    |          |                   |            |
|     | Compute the variance of the random process $X(t)$ whose                                                         | BTL-1    | Remembering       | CO3        |
| 24. | autocorrelation function is given by $R_{XX}(\tau) = 25 + \frac{4}{1+6\tau^2}$ .                                |          | -                 |            |
|     | $\frac{1}{1+6\tau^2}$                                                                                           |          |                   |            |
|     | Check whether the Markov chain with transition probability                                                      | BTL-2    | Understanding     | CO3        |
| 25. | matrix $P = \begin{bmatrix} 0 & 1 & 0 \\ 1/2 & 0 & 1/2 \end{bmatrix}$ is irreducible or not?                    |          |                   |            |
|     | matrix $P = \begin{bmatrix} 1/2 & 0 & 1/2 \\ 0 & 1 & 0 \end{bmatrix}$ is irreducible or not?                    |          |                   |            |
|     |                                                                                                                 | <u> </u> |                   |            |
|     | PART – B                                                                                                        |          |                   |            |
| 1.  | The process {X(t)} whose probability distribution under                                                         | BTL-3    | Applying          | CO 3       |
|     | certain conditions is given by                                                                                  |          |                   |            |
|     |                                                                                                                 |          |                   |            |

|       | $P\{X(t) = n\} = \begin{cases} \frac{(at)^{n-1}}{(1+at)^{n+1}}, n = 1, 2\\ \frac{at}{(1+at)}, n = 0 \end{cases}$ . Show that it is not                                                                                                                                                                                                                                               |       |           |      |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------|------|
|       | stationary.                                                                                                                                                                                                                                                                                                                                                                          |       |           |      |
| 2.(a) | A radioactive source emits particles at a rate of 5 per minute in<br>accordance with poisson process. Each particle emitted has a<br>probability 0.6 of being recorded. Find the probability that 10<br>partcles are recorded in 4 minute period                                                                                                                                     | BTL-3 | Applying  | CO 3 |
| 2.(b) | Find the mean and autocorrelation of the Poisson processes                                                                                                                                                                                                                                                                                                                           | BTL-3 | Applying  | CO 3 |
| 3.(a) | If the random process $\{X(t)\}$ takes the value -1 with probability 1/3 and takes the value +1 with probability 2/3, find whether $\{X(t)\}$ is a stationary process or not.                                                                                                                                                                                                        | BTL-3 | Applying  | CO 3 |
| 3.(b) | Prove that the sum of two independent Poisson process is a Poisson process.                                                                                                                                                                                                                                                                                                          | BTL-3 | Applying  | CO 3 |
| 4.(a) | Consider a random process $X(t) = B \cos (50 t + \Phi)$ where B<br>and $\Phi$ are independent random variables. B is a random<br>variable with mean 0 and variance 1. $\Phi$ is uniformly distributed<br>in the interval [- $\pi$ , $\pi$ ]. Determine the mean and auto correlation<br>of the process.                                                                              | BTL-3 | Applying  | CO 3 |
| 4.(b) | Prove that the difference of two independent Poisson process is not a Poisson process.                                                                                                                                                                                                                                                                                               | BTL-3 | Applying  | CO 3 |
| 5.(a) | Show that the random process $X(t) = A \cos(\omega t + \theta)$ is wide<br>sense stationary, if A and $\omega$ are constant and $\theta$ is a uniformly<br>distributed random variable in $(0, 2\pi)$ .                                                                                                                                                                              | BTL-3 | Applying  | CO 3 |
| 5.(b) | A fisherman catches a fish at a poisson rate of 2 per hour from<br>a large lake with lots of fish. If he starts fishing at 10 am. What<br>is the probability that he catches one fish by 10.30 am and three<br>fishes by noon.                                                                                                                                                       | BTL-4 | Analyzing | CO 3 |
| 6.(a) | Suppose that customers arrive at a bank according to poisson<br>process with mean rate of 3 per minute. Find the probability<br>that during a time of two minutes (1) Exactly 4 customers arrive<br>(2) Greater than 4 customers arrive (3) Fewer than 4 customers<br>arrive                                                                                                         | BTL-3 | Applying  | CO 3 |
| 6.(b) | Prove that the inter arrival time of the Poisson process follows<br>exponential distribution                                                                                                                                                                                                                                                                                         | BTL-3 | Applying  | CO 3 |
| 7.    | Show that the random process $X(t) = Acos\omega t + Bsin\omega t$ is<br>wide sense stationary process if A and B are random variables<br>such that $E(A) = E(B) = 0$ , $E(A^2) = E(B^2)$ and $E(AB) = 0$                                                                                                                                                                             | BTL-3 | Applying  | CO 3 |
| 8.    | A salesman's territory consists of three regions A, B, C. He<br>never sells in the same region on successive days. If he sells in<br>region A, then the next day he sells in B. However, if he sells<br>either B or C, then the next day he is twice as likely to sell in A<br>as in the other region. Explain how often does he sell in each<br>of the regions in the steady state? | BTL-3 | Applying  | CO 3 |

| 9.     | There are 2 white marbles in urn A and 3 red marbles in urn B.<br>At each step of the process, a marble is selected from each urn<br>and the 2 marbles selected are interchanged. The state of the<br>related markov chain is the number of red marbles in urn A<br>after the interchange. What is the probability that there are 2 | BTL-3 | Applying  | CO 3 |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------|------|
|        | red marbles in urn A after the interchange? What is the                                                                                                                                                                                                                                                                             |       |           |      |
|        | probability that there are 2 red marbles in urn A after 3 steps?                                                                                                                                                                                                                                                                    |       |           |      |
|        | In the long run, what is the probability that there are 2 red                                                                                                                                                                                                                                                                       |       |           |      |
| 10 (a) | marbles in urn A<br>A hard disk fails in a computer system and it follows a poisson                                                                                                                                                                                                                                                 | BTL-4 | Analyzing | CO 3 |
| 10.(a) | distribution with mean rate of 1 per week. Find the probability                                                                                                                                                                                                                                                                     | DIL-4 | Anaryzing | 0.05 |
|        | that 2 weeks have elapsed since last failure. If we have extra                                                                                                                                                                                                                                                                      |       |           |      |
|        | hard disks and the next supply is not due in 10 weeks, find the                                                                                                                                                                                                                                                                     |       |           |      |
|        | probability that the machine will not be out of order in next 10                                                                                                                                                                                                                                                                    |       |           |      |
|        | weeks.                                                                                                                                                                                                                                                                                                                              |       |           |      |
| 10.(b) | The probability of a dry day following a rainy day is 1/3 and                                                                                                                                                                                                                                                                       | BTL-3 | Applying  | CO 3 |
| 10.(0) | that the probability of a rainy day following a dry day is $\frac{1}{2}$ . Given that May 1 <sup>st</sup> is a dry day. Obtain the probability that                                                                                                                                                                                 |       |           |      |
| 11     | May 3 <sup>rd</sup> is a dry day also May 5 <sup>th</sup> is a dry day                                                                                                                                                                                                                                                              | BTL-4 | A         |      |
| 11.    | A fair die is tossed repeatedly. If $X_n$ denotes the maximum of                                                                                                                                                                                                                                                                    | BIL-4 | Analyzing | CO 3 |
|        | the numbers occurring in the first n tosses, Evaluate the transition much ability matrix $\mathbf{P}$ of the Markov shein $(\mathbf{X})$ . Find                                                                                                                                                                                     |       |           |      |
|        | transition probability matrix P of the Markov chain $\{X_n\}$ . Find                                                                                                                                                                                                                                                                |       |           |      |
| 12.    | also $P{X_2=6}$ and $P^2$ .<br>The transition probability matrix of a Markov chain ${X_n}$ , n =                                                                                                                                                                                                                                    | BTL-3 | Applying  | CO 3 |
| 12.    | The transition probability matrix of a Markov chain $\{X_n\}, n = \begin{bmatrix} 0.1 & 0.5 & 0.4 \end{bmatrix}$                                                                                                                                                                                                                    | DIL-3 | Applying  | 005  |
|        |                                                                                                                                                                                                                                                                                                                                     |       |           |      |
|        | 1, 2, 3, having 3 states 1, 2 and 3 is $P = \begin{bmatrix} 0.6 & 0.2 & 0.2 \\ 0.2 & 0.4 & 0.2 \end{bmatrix}$                                                                                                                                                                                                                       |       |           |      |
|        |                                                                                                                                                                                                                                                                                                                                     |       |           |      |
|        | and the initial distribution is $P(0) = (0.7, 0.2, 0.1)$ . Evaluate                                                                                                                                                                                                                                                                 |       |           |      |
|        | i) $P(X_2 = 3)$ ii) $P(X_3 = 2, X_2 = 3, X_1 = 3, X_0 = 2)$                                                                                                                                                                                                                                                                         |       |           |      |
| 13.    | Consider the Markov chain $\{X_n, n=0, 1, 2, 3,\}$ having 3                                                                                                                                                                                                                                                                         | BTL-3 | Applying  | CO 3 |
|        |                                                                                                                                                                                                                                                                                                                                     |       |           |      |
|        | states space S={1,2,3} and one step TPM $P = \begin{bmatrix} 0 & 1 & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} \\ 0 & 1 & 0 \end{bmatrix}$                                                                                                                                                                                                 |       |           |      |
|        | and initial probability distribution $P(X_0=i)=1/3$ , $i=1, 2, 3$ .                                                                                                                                                                                                                                                                 |       |           |      |
|        | Compute (1) $P(X_3=2, X_2=1, X_1=2/X_0=1)$                                                                                                                                                                                                                                                                                          |       |           |      |
|        | (2) $P(X_3=2, X_2=1/X_1=2, X_0=1)$                                                                                                                                                                                                                                                                                                  |       |           |      |
|        | <ul> <li>(3) P(X<sub>2</sub>=2/X<sub>0</sub>=2)</li> <li>(4) Invariant Probabilities of the Markov Chain.</li> </ul>                                                                                                                                                                                                                |       |           |      |
| 14.(a) | Let $\{X_n : n = 1, 2, 3,\}$ be a Markov chain on the space S =                                                                                                                                                                                                                                                                     | BTL-3 | Applying  | CO 3 |
| 11.(u) |                                                                                                                                                                                                                                                                                                                                     | 2120  |           | 005  |
|        | $\{1, 2, 3\}$ with one step t p m $P = \begin{bmatrix} 1/& 0 & 1/ \end{bmatrix}$                                                                                                                                                                                                                                                    |       |           |      |
|        | (1,2,5)  with one step t.p.m $1 -  /2 - 0 - /2 $                                                                                                                                                                                                                                                                                    |       |           |      |
|        |                                                                                                                                                                                                                                                                                                                                     |       |           |      |
|        | {1,2,3} with one step t.p.m $P = \begin{bmatrix} 0 & 1 & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} \\ 1 & 0 & 0 \end{bmatrix}$<br>1. Sketch the transition diagram, 2. Is the chain irreducible?                                                                                                                                           |       |           |      |

| 14.(b) | If customers arrive at a counter in accordance with a Poisson<br>process with a mean rate of 2 per minute, Evaluate the<br>probability that the interval between 2 consecutive arrivals is<br>(a) more than 1 minute, (b) between 1 minute and 2 minutes<br>and (c) 4 minutes or less                                                                                                                                                                                                                                                                                                                                            | BTL-4       | Analyzing       | CO 3              |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------|-------------------|
| 15.    | Three boys A, B and C are throwing a ball to each other. A always throws the ball to B and B always throws the ball to C but C is just as likely to throw the ball to B as to A. Show that the process is Markovian. Find the transition probability matrix and classify the states                                                                                                                                                                                                                                                                                                                                              | BTL-4       | Analyzing       | CO 3              |
| 16.    | Consider a Markov chain chain {X <sub>n</sub> , n= 0, 1, 2,} having<br>states space S={ 1,2} and one step TPM $P = \begin{bmatrix} \frac{4}{10} & \frac{6}{10} \\ \frac{8}{10} & \frac{2}{10} \end{bmatrix}$ .<br>(1) Draw a transition diagram, (2) Is the chain irreducible?                                                                                                                                                                                                                                                                                                                                                   | BTL-4       | Analyzing       | CO 3              |
| 17.    | Classify the states of the Markov chain for the one-step<br>transition probability matrix $P = \begin{pmatrix} 0 & 1 & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} \\ 0 & 1 & 0 \end{pmatrix}$ with state<br>space S = {1,2,3}                                                                                                                                                                                                                                                                                                                                                                                                            | BTL-4       | Analyzing       | CO 3              |
| 18.    | On a given day, a retired English professor, Dr. Charles Fish<br>amuses himself with only one of the following activities<br>reading (i), gardening (ii) or working on his book about a river<br>valley (iii) for $1 \le i \le 3$ , let $X_n = i$ , if Dr. Fish devotes day <i>n</i> to<br>activity <i>i</i> . Suppose that $\{X_n : n=1, 2,\}$ is a Markov chain,<br>and depending on which of these activities on the next day is<br>given by the t. p. m $P = \begin{bmatrix} 0.30 & 0.25 & 0.45 \\ 0.40 & 0.10 & 0.50 \\ 0.25 & 0.40 & 0.35 \end{bmatrix}$ Find the<br>proportion of days Dr. Fish devotes to each activity. | BTL-3       | Applying        | CO 3              |
| UNIT-I | V: VECTOR SPACES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | I           | L               | I                 |
|        | spaces – Subspaces – Linear combinations– Linear independer ons (definition only)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nce and lin | near dependence | – Bases and       |
| Q.No.  | Question                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BT<br>Level | Competence      | Course<br>Outcome |
|        | PART – A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | I.          | 1               |                   |
| 1.     | Define Vector Space                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BTL-1       | Remembering     | CO 4              |
| 2      | Define Subspace of a vector space                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BTL-1       | Remembering     | CO 4              |
| 2.     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |                 |                   |

| 4.       | In a Vector Space V (F) if $\alpha v=0$ then either $\alpha=0$ or $v=0$ prove.                                                                                                                                     | BTL-2 | Understanding | CO 4 |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------|------|
| 5.       | Is $\{(1,4,-6), (1,5,8), (2,1,1), (0,1,0)\}$ is a linearly independent subset of $R^3$ ? Justify your answer                                                                                                       | BTL-2 | Understanding | CO 4 |
| 6.       | State Replacement Theorem                                                                                                                                                                                          | BTL-1 | Remembering   | CO 4 |
| 7.       | In a vector Space V(F), prove that $0v=0$ , for all $v \in V$                                                                                                                                                      | BTL-2 | Understanding | CO 4 |
| 8        | Write the vectors $v = (1, -2, 5)$ as a linear combination of the vectors $x = (1,1,1)$ , $y = (1,2,3)$ and $z = (2, -1,1)$                                                                                        | BTL-2 | Understanding | CO 4 |
| 9.       | What is the Dimension of $M_{2x2}(R)$ ?                                                                                                                                                                            | BTL-2 | Understanding | CO 4 |
| 10.      | Determine whether the set W={ $(a_1,a_2,a_3)\in R^3:a_1+2a_2-3a_3=1$ } is a subspace of $R^3$ under the operations of addition and scalar multiplication.                                                          | BTL-2 | Understanding | CO 4 |
| 11.      | Determine whether $w = (4, -7, 3)$ can be written as a linear combination of $v_1 = (1, 2, 0)$ and $v_2 = (3, 1, 1)$ in $R^3$                                                                                      | BTL-2 | Understanding | CO 4 |
| 12.      | For which value of k will the vector $u = (1, -2, k)$ in $\mathbb{R}^3$ be a linear combination of the vectors $v = (3, 0, -2)$ and $w = (2, -1, 5)$ ?                                                             | BTL-2 | Understanding | CO 4 |
| 13.      | Define Infinite dimensional vector Space                                                                                                                                                                           | BTL-1 | Remembering   | CO 4 |
| 14.      | Point out whether the set $W_1 = \{(a_1, a_2, a_3) \in \mathbb{R}^3 : a_1 - 4a_2 - a_3 = 0\}$ is a subspace of $\mathbb{R}^3$ under the operations of addition and scalar multiplication defined on $\mathbb{R}^3$ | BTL-2 | Understanding | CO 4 |
| 15.      | If W is a Subspace of the Vector Space V(F) prove that W must contain 0 vector in V                                                                                                                                | BTL-2 | Understanding | CO 4 |
| 16.      | Point out whether $w = (3,4,1)$ can be written as a linear combination of $v_1 = (1,-2,1)$ and $v_2 = (-2,-1,1)$ in $R^3$                                                                                          | BTL-2 | Understanding | CO 4 |
| 17.      | What are the possible subspaces of $\mathbb{R}^3$                                                                                                                                                                  | BTL-2 | Understanding | CO 4 |
| 18.      | Show that the vectors {(1,1,0), (1,0,1) and (0,1,1)} genarate $R^3$                                                                                                                                                | BTL-2 | Understanding | CO 4 |
| 19.      | If $v_1, v_2 \in V(F)$ and $\alpha_1, \alpha_2 \in F$ . Show that the set $\{v_1, v_2, \alpha_1v_{1+}, \alpha_2v_2\}$ is linearly dependent                                                                        | BTL-2 | Understanding | CO 4 |
| 20.      | Test whether $S = \{(2,1,0), (1,1,0), (4,2,0)\}$ in $R^3$ is a basis of $R^3$ over R                                                                                                                               | BTL-2 | Understanding | CO 4 |
| 21.      | Define finite dimensional Vector Space                                                                                                                                                                             | BTL-1 | Remembering   | CO 4 |
| 22.      | Is $v = (2, -5, 4)$ a linear combination of (1,-3,2) and (2,-1,1) in $R^{3}(\mathbb{R})$ ?                                                                                                                         | BTL-1 | Remembering   | CO 4 |
| 23.      | Define linear span                                                                                                                                                                                                 | BTL-1 | Remembering   | CO 4 |
| 24.      | Show that the set $S = \{(0,1,0), (1,0,1) \text{ and } (1,1,0)\}$ in $R^3$ is a basis over R                                                                                                                       | BTL-2 | Understanding | CO 4 |
| 25.      | Define linear combination of vectors                                                                                                                                                                               | BTL-1 | Remembering   | CO 4 |
| PART – B |                                                                                                                                                                                                                    |       |               |      |

|     |                                                                                                                                                                                                                                                                                                                           |       |           | 1    |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------|------|
| 1.  | Determine whether the following set is linearly dependent or<br>linearly independent $\begin{pmatrix} 1 & 0 \\ -2 & 1 \end{pmatrix}$ , $\begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix}$ , $\begin{pmatrix} -1 & 2 \\ 1 & 0 \end{pmatrix}$ and $\begin{pmatrix} 2 & 1 \\ 2 & -2 \end{pmatrix}$ generate $M_{2 \times 2}(R)$ | BTL-3 | Applying  | CO 4 |
| 2.  | If x, y and z are vectors in a vector space V such that $x + z = y + z$ , then prove that $x = y$ i) The vector 0 (identity) is unique ii) The additive identity for any $x \in V$ is unique                                                                                                                              | BTL-4 | Analyzing | CO 4 |
| 3.  | Show that the set ,S={(1,3,-4,2), (2,2,-4,0), (1,-3,2,-4), (-1,0,1,0)} is linearly dependent of the other vectors                                                                                                                                                                                                         | BTL-4 | Analyzing | CO 4 |
| 4.  | Determine whether the following subset of vector space $\mathbb{R}^{3}(\mathbb{R})$<br>is a subspace $\mathbb{W}_{1} = \{((a_{1}, a_{2}, a_{3}): 2a_{1}-7a_{2}+a_{3}=0\}$                                                                                                                                                 | BTL-3 | Applying  | CO 4 |
| 5.  | Illustrate that set of all diagonal matrices of order $n \times n$ is a subspace of the vector space $M_{n \times n}(F)$ , where $M_{n \times n}$ is the set of all square matrices over the field <i>F</i> .                                                                                                             | BTL-4 | Analyzing | CO 4 |
| 6.  | Evaluate that $W_1 = \{(a_1, a_2, \dots a_n) \in F^n; a_1 + a_2 + \dots + a_n = 0\}$ is a subspace of $F^n$ and $W_2 = \{(a_1, a_2, \dots a_n) \in F^n; a_1 + a_2 + \dots + a_n = 1\}$ is not a subspace.                                                                                                                 | BTL-3 | Applying  | CO 4 |
| 7.  | Illustrate that the vectors $\{(1,1,0), (1,0,1), (0,1,1)\}$ generate $R^3$                                                                                                                                                                                                                                                | BTL-4 | Analyzing | CO 4 |
| 8.  | Determine the following sets $\{1-2x-2x^2, -2+3x-x^2, 1-x+6x^2\}$ are bases for P <sub>2</sub> (R).                                                                                                                                                                                                                       | BTL-3 | Applying  | CO 4 |
| 9.  | Analyze that the matrices $\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$ , $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ , $\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$ and $\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$ generate $M_{2 \times 2}(R)$ .                                                              | BTL-4 | Analyzing | CO 4 |
| 10. | Identify whether the set $\{x^3 + 2x^2, -x^2 + 3x + 1, x^3 - x^2 + 2x - 1\}$ in $P_3(R)$ is linearly independent or not.                                                                                                                                                                                                  | BTL-3 | Applying  | CO 4 |
| 11. | Determine the following sets $\{1+2x-x^2, 4-2x+x^2, -1+18x-9x^2\}$ are bases for P <sub>2</sub> (R).                                                                                                                                                                                                                      | BTL-3 | Applying  | CO 4 |
| 12. | Illustrate that the set $\{1, x, x^2, \dots, x^n\}$ is a basis for $P_n(F)$ .                                                                                                                                                                                                                                             | BTL-3 | Applying  | CO 4 |
| 13. | Determine whether the set of vectors {(1,0,0,-1), (0,1,0,-1), (0,0,1,-1), (0,0,0,1)} is a basis for $R^4$                                                                                                                                                                                                                 | BTL-3 | Applying  | CO 4 |
| 14. | Determine the basis and dimension of the solution space of the linear homogeneous system $x+y-z=0$ , $-2x-y+2z=0$ , $-x+z=0$ .                                                                                                                                                                                            | BTL-3 | Applying  | CO 4 |
| 15. | Determine x so that the vectors $(1,-1,x-1),(2,x,-4),(0,x+2,-8)$<br>are linearly dependent over R                                                                                                                                                                                                                         | BTL-3 | Applying  | CO 4 |
| 16. | Decide whether or not the set $S = \{x^3 + 3x - 2, 2x^2 + 5x - 3, -x^2 - 4x + 4\}$ is a basis for $P_2(R)$                                                                                                                                                                                                                | BTL-4 | Analyzing | CO 4 |
| 17. | Determine whether the set of vectors $X_{1=}(1,0,-1)$ , $X_{2=}(2,5,1)$ ,<br>and $X_{3=}(0,-4,3)$ is a basis for $R^3$                                                                                                                                                                                                    | BTL-3 | Applying  | CO 4 |
| 18. | The set of solutions to the system of linear equations $x_1$ - $2x_2+x_3=0$ , $2x_1-3x_2+x_3=0$ is a subspace of $\mathbb{R}^3$ . Find a basis for this subspace.                                                                                                                                                         | BTL-4 | Analyzing | CO 4 |

# **UNIT-V: LINEAR TRANSFORMATION**

Linear transformation – Null spaces and ranges – Dimension theorem – Matrix representation of linear transformations

| Q.No. | Question                                                                                                                                            | BT<br>Level | Competence    | Course<br>Outcome |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------|-------------------|
|       | PART – A                                                                                                                                            |             |               |                   |
| 1.    | Define linear transformation of a function                                                                                                          | BTL-1       | Remembering   | CO 5              |
| 2.    | If $T: V \to W$ be a linear transformation then prove that $T(-v) = -v$ for $v \in V$                                                               | BTL-2       | Understanding | CO 5              |
| 3.    | If $T: V \to W$ be a linear transformation then prove that $T(x - y) = x - y$ for all $x, y \in V$                                                  | BTL-2       | Understanding | CO 5              |
| 4.    | Prove that the transformation T is linear if and only if $T(cx + y) = cT(x) + T(y)$                                                                 | BTL-2       | Understanding | CO 5              |
| 5.    | Illustrate that the transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by $T(a_1, a_2) = (2a_1 + a_2, a_2)$ is linear                        | BTL-2       | Understanding | CO 5              |
| 6.    | Evaluate that the transformation $T: \mathbb{R}^3 \to \mathbb{R}^2$ defined by $T(x, y, z) = (x, 0, 0)$ a linear transformation.                    | BTL-2       | Understanding | CO 5              |
| 7.    | Describe explicitly the linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ such that $T(2,3) = (4,5)$ and $T(1,0) = (0,0)$                    | BTL-1       | Remembering   | CO 5              |
| 8.    | Illustrate that the transformation $T: \mathbb{R}^2 \to \mathbb{R}^3$ defined by $T(x, y) = (x + 1, 2y, x + y)$ is not linear                       | BTL-2       | Understanding | CO 5              |
| 9.    | Is there a linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ such that $T(1,0,3) = (1,1)$ and $T(-2,0,-6) = (2,1)$ ?                         | BTL-2       | Understanding | CO 5              |
| 10.   | Define null space.                                                                                                                                  | BTL-1       | Remembering   | CO 5              |
| 11.   | Define matrix representation of T relative to usual basis {e <sub>i</sub> }                                                                         | BTL-1       | Remembering   | CO 5              |
| 12.   | Find the matrix $[T]_e$ whose linear operator <i>is</i> $T(x, y) = (5x + y, 3x - 2y)$                                                               | BTL-2       | Understanding | CO 5              |
| 13.   | Find a basis for the null space of the matrix $A = \begin{pmatrix} 5 & 2 \\ 1 & 0 \end{pmatrix}$                                                    | BTL-2       | Understanding | CO 5              |
| 14.   | Let $V = R^4$ and consider the following subset of V: $W = \{(x_1, x_2, x_3, x_4) \in R^4   2x_1 - 3x_2 + x_3 - 7x_4 = 0\}$ . Is W a subspace of V? | BTL-1       | Remembering   | CO 5              |
| 15.   | Find the matrix representation of usual basis $\{e_i\}$ to the linear operator $T(x, y, z) = (2y + z, x - 4y, 3x)$                                  | BTL-2       | Understanding | CO 5              |
| 16.   | State the dimension theorem for matrices.                                                                                                           | BTL-1       | Remembering   | CO 5              |
| 17.   | Verify the dimension theorem for $T_{\theta}((a_1, a_2)) = (0, a_2)$                                                                                | BTL-2       | Understanding | CO 5              |
| 18.   | Verify the dimension theorem for $T_{\theta}((a_1, a_2)) = (a_1 \cos \theta - a_2 \sin \theta, a_1 \sin \theta + a_2 \cos \theta)$                  | BTL-2       | Understanding | CO 5              |
| 19.   | Show that $T: E^2 \to E^2$ , defined by $T((x_1, x_2)) = (x_1 + x_2, x_1 - x_2 + 1)$ is not linear.                                                 | BTL-2       | Understanding | CO 5              |
| 20.   | Show that $T: E^2 \to E^1$ , defined by $T((x_1, x_2)) = x_1^2 + x_2^2$ is not linear.                                                              | BTL -2      | Understanding | CO 5              |
| 21.   | Define Range                                                                                                                                        | BTL-1       | Remembering   | CO 5              |

|     | Show that $T: C^2 \to C^2$ , defined by $T((x_1, x_2)) = (z_1 + z_2)$ ,                                                                                                                                                                        | BTL -2 | Understanding | CO 5     |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------|----------|
| 22. | $z_1 - 2z_2$ ) is linear.                                                                                                                                                                                                                      |        | Chaolstanding | 000      |
|     | Find ker T, where $T: E^3 \rightarrow E^2$ is defined by $T((x_1, x_2, x_3)) =$                                                                                                                                                                | BTL -2 | Understanding | CO 5     |
| 23. | $(x_1 + x_2, x_2 - x_3).$                                                                                                                                                                                                                      |        | Chaolstanding | 000      |
|     | Let $T: (E^2, S) \to (E^2, \tau)$ be defined by $T((x_1, x_2)) = (x_1 + \tau)$                                                                                                                                                                 | BTL -2 | Understanding | CO 5     |
| 24. |                                                                                                                                                                                                                                                | DIL-2  | Onderstanding | 005      |
|     | $2x_2, x_1 - x_2$ ). Find the matrix of <i>T</i> when $S = \tau = \{e_1, e_2\}$ .                                                                                                                                                              | BTL -2 | Understanding | CO 5     |
|     | Let $T: (E^2, S) \to (E^2, \tau)$ be defined by $T((x_1, x_2)) = (x_1 + \tau)$                                                                                                                                                                 | BIL-2  | Understanding | 05       |
| 25. | $2x_2, x_1 - x_2$ ). Find the matrix of <i>T</i> when $S = \tau = \{(1, 2), (1, 2), (2, -1)\}$                                                                                                                                                 |        |               |          |
|     | (3,-1)}.                                                                                                                                                                                                                                       |        |               |          |
|     | PART – B                                                                                                                                                                                                                                       |        |               |          |
|     | For each of the following linear operators T on a vector space                                                                                                                                                                                 | BTL-3  | Applying      | CO 5     |
| 1.  | V and ordered basis $\beta$ , compute $[T]_{\beta}$ , V=R <sup>2</sup> , T $\binom{a}{b} = \binom{10a-6b}{17a-10b}$ ,                                                                                                                          |        |               |          |
|     | $\beta = \{ \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 2 \\ 2 \end{pmatrix} \}$                                                                                                                                                     |        |               |          |
|     | Let $T: P_2(R) \rightarrow P_3(R)$ be defied by $T[f(x)] = 2f'(x) + $                                                                                                                                                                          | BTL-3  | Applying      | CO 5     |
|     | $\int_0^x 3f(t)dt$ . Prove that T is linear, find the bases for $N(T)$ and                                                                                                                                                                     |        | PPIJIIB       |          |
| 2.  | R(T). Compute the nullity and rank of T. Determine whether T                                                                                                                                                                                   |        |               |          |
|     | is one-to-one or onto.                                                                                                                                                                                                                         |        |               |          |
|     | Let $T: P_2(R) \to P_3(R)$ be defined by $T[f(x)] = xf(x) + $                                                                                                                                                                                  | BTL-3  | Applying      | CO 5     |
| 3.  | f'(x) is linear. Find the bases for both $N(T)$ , $R(T)$ , nullity of T,                                                                                                                                                                       |        |               |          |
|     | rank of T and determine whether T is one –to-one or onto.                                                                                                                                                                                      |        | A 1 '         | 005      |
|     | Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation defined by<br>T(x, y, z) = (x + 2y - z, y + z, x + y - 2z). Evaluate a basis                                                                                                 | BTL-3  | Applying      | CO 5     |
| 4.  | and dimension of null space N(T) and range space $R(T)$ and                                                                                                                                                                                    |        |               |          |
|     | range space R(T). Also verify dimension theorem                                                                                                                                                                                                |        |               |          |
| 5.  | Find a linear map $T: \mathbb{R}^3 \to \mathbb{R}^4$ whose image is generated by                                                                                                                                                               | BTL-3  | Applying      | CO 5     |
| 5.  | (1,2,0,-4) and (2,0,-1,-3)                                                                                                                                                                                                                     |        |               |          |
|     | Point out that T is a linear transformation and find bases for<br>both N(T) and P(T). Compute pullity reply T. Verify dimension                                                                                                                | BTL-4  | Analyzing     | CO 5     |
| 6.  | both N(T) and R(T). Compute nullity rank T. Verify dimension theorem also verify whether T is one –to-one or onto where                                                                                                                        |        |               |          |
|     | $T: P_2(R) \rightarrow P_3(R)$ defined by $T[f(x)] = xf(x) + f'(x)$                                                                                                                                                                            |        |               |          |
|     | For each of the following linear operators T on a vector space                                                                                                                                                                                 | BTL-3  | Applying      | CO 5     |
| 7.  | V and ordered basis $\beta$ , compute $[T]_{\beta}$ , V=P <sub>1</sub> (R), T(a+bx)=(6a-                                                                                                                                                       |        |               |          |
|     | 6b)+(12a-11b)x and $\beta = \{3+4x,2+3x\}$                                                                                                                                                                                                     | BTL-4  | A nolymin -   | <u> </u> |
|     | Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be defined by $T(x, y) = (x + 3y, 0, 2x - 4y)$ . Compute the matrix of the transformation with respect to                                                                                               | DIL-4  | Analyzing     | CO 5     |
| 8.  | the standard bases of $R^2$ and $R^3$ . Find N(T) and R(T).                                                                                                                                                                                    |        |               |          |
|     | Is T one –to-one? Is T onto. Justify your answer.                                                                                                                                                                                              |        |               |          |
|     | Let T be the linear operator on $\mathbb{R}^3$ defined by $T(x, y, z) =$                                                                                                                                                                       | BTL-4  | Analyzing     | CO 5     |
| 9.  | (2x - 7y - 4z, 3x + y + 4z, 6x - 8y + z) (i) Find the matrix                                                                                                                                                                                   |        |               |          |
|     | of T in the basis { $f_1=(1,1,1)$ , $f_2=(1,1,0)$ $f_3=(1,0,0)$ and<br>(ii) Varify [T] = [T(y)], for any vector $y \in \mathbb{R}^3$                                                                                                           |        |               |          |
|     | (ii) Verify $[T]_f [T]_v = [T(v)]_f$ for any vector $v \in \mathbb{R}^3$                                                                                                                                                                       | BTL -3 |               | CO 5     |
| 10. | Let $\alpha = \{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \}, \beta = \{1, x, x^2\} \text{ and}$ |        | Applying      |          |
|     | $\gamma = \{1\}, \text{Define T:} M_{2x2}(F) \rightarrow M_{2x2}(F) \text{ by } T(A) = A^{T} \cdot \text{Compute } [T]_{\alpha}.$                                                                                                              |        | Thhrame       |          |

| r   | 4 0                                                                                                                                                                                                                                                                                                                                                                | 1      |           |      |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------|------|
| 11. | Let V be the space of 2x2 matrices over R and let $M = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ .<br>Let T be linear operator defined by T(A)=MA. Find the trace of T.                                                                                                                                                                                        | BTL -4 | Analyzing | CO 5 |
| 12. | Let <i>V</i> and <i>W</i> be vector spaces over F, and suppose that $\{v_1, v_2, \dots, v_n\}$ is a basis for V, For $w_1, w_2, \dots, w_n$ in W.<br>Prove that there exists exactly one linear transformation $T: V \rightarrow W$ such that $T(v_i) = w_i$ for i=1,2,n                                                                                           | BTL-4  | Analyzing | CO 5 |
| 13. | Consider the basis $S=\{v_1,v_2,v_3\}$ for $\mathbb{R}^3$ where $v_1=(1,1,1)$ ,<br>$v_2=(1,1,0)$ and $v_3=(1,0,0)$ . Let $T:\mathbb{R}^3 \rightarrow \mathbb{R}^2$ be the linear<br>transformation such that $T(v_1)=(1,0)$ , $T(v_2)=(2,-1)$ and $T(v_3) =$<br>(4,3). Find the formula for $T(x_1,x_2,x_3)$ , then use this formula to<br>compute $T(2,-3,5)$     | BTL-4  | Analyzing | CO 5 |
| 14. | Let T be a linear operator defined by $T(a, b, c) = (-4a + 3b - 6c, 6a - 7b + 12c, 6a - 6b + 11c)$ , $\beta$ be the ordered basis then find $[T]_{\beta}$ .                                                                                                                                                                                                        | BTL -3 | Applying  | CO 5 |
| 15. | Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be defined by $T(x, y, z) = (2x - y, 3z)$ verify<br>whether T is linear or not. Find N(T) and R(T) and hence verify<br>the dimension theorem.                                                                                                                                                                               | BTL-4  | Analyzing | CO 5 |
| 16. | Let $T: M_{22} \to M_{22}$ be defined by $T(A) = A - A^T$ . Given the standard basis $S = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\} = \{e_1, e_2, e_3, e_4\}$ , find the matrix for $T$ w.r.t. $S$ . | BTL-4  | Analyzing | CO 5 |
| 17. | Let $T: P_1 \to P_2$ be defined by $T(a + bx) = ax + \left(\frac{b}{2}\right)x^2$ . Given $P_1$ and $P_2$ the standard bases $S = \{1, x\}$ and $\tau = \{1, x, x^2\}$ , respectively. Find the matrix of $T$ w.r.t. theses bases.                                                                                                                                 | BTL -3 | Applying  | CO 5 |
| 18. | Let $T: (E^2, S) \to (E^2, \tau)$ be defined by $T((x_1, x_2)) = (x_1 + 2x_2, x_1 - x_2)$ . Find the matrix of $T$ when<br>(i) $S = \tau = \{(3, -1), (1, 2)\}$ . (ii) $S = \{(1, -1), (1, 1)\}, \tau = \{(1, 0), (0, -1)\}$ . (iii) $S = \{(1, -1), (1, 1)\}, \tau = \{(0, -1), (1, 0)\}$ .                                                                       | BTL -3 | Applying  | CO 5 |