SRM VALLIAMMAI ENGINEERING COLLEGE (An Autonomous Institution)

S.R.M. Nagar, Kattankulathur - 603203

DEPARTMENT OF MATHEMATICS

QUESTION BANK

IV SEMESTER

B.Tech- ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

MA3428–Applied Mathematics for Data Science

Regulation – 2023

Academic Year - 2024 - 2025

Prepared by

Dr. G.SASIKALA, Assistant Professor / Mathematics

SRM VALLIAMMAI ENGNIEERING COLLEGE

(An Autonomous Institution) SRM Nagar, Kattankulathur – 603203. DEPARTMENT OF MATHEMATICS

S.No	DEPARTMENT OF MATHEMATICS QUESTIONS	BT Level	Competence	COs							
UNIT I-RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS											
Discrete and continuous random variables- Binomial, Poisson and Normal distributions											
Part - A (2 MARK QUESTIONS)											
1.	Define Probability of an event.	BTL -1	Remembering	CO1							
2.	State the Axioms of Probability.	BTL -1	Remembering	CO1							
3.	State the addition theorem on probability.	BTL -2	Understanding	CO1							
4.	Define independent events.	BTL -2	Understanding	CO1							
5.	Define mutually exclusive events.	BTL -2	Understanding	CO1							
6.	Define Conditional Probability.	BTL -2	Understanding	CO1							
7.	State the theorem of total probability.	BTL -1	Remembering	C01							
8.	State Baye's theorem.	BTL -2	Understanding	CO1							
9.	A ball is drawn at random from a box containing 5 red balls, 3 white balls and 4 blue balls. Find the probability that the ball drawn is not red.	BTL -1	Remembering	CO1							
10.	What is the Probability that a leap year selected at random will have 53 Sundays?	BTL -1	Remembering	CO1							
11.	If a box contains 75 good items and 25 defective items, and 12 items are selected at random, find the probability that at least one item is defective	BTL -2	Understanding	CO1							
12.	A and B are events with $P(A) = \frac{5}{8}$, $P(B) = \frac{1}{2}$ and $P(A \cap B) = \frac{1}{4}$. Find $P(\overline{A} \cap \overline{B})$	BTL -2	Understanding	CO1							
13.	The number of hardware failures of a computer system in a week ofoperations has the following p.d.f, Calculate the value of k.No.of failures01223456Probabilityk2k2k3k4k	BTL -1	Remembering	CO1							
14.	If $p(x) = kx^2$, $x = 0,1,2,3$, is to be a density function, find the value of <i>k</i> .	BTL -1	Remembering	CO1							
15.	Write the probability function of Binomial Distribution.	BTL -2	Understanding	CO1							
16.	The mean of Binomial distribution is 36 and standard deviation is 6. Find the parameters of the distribution.	BTL -1	Remembering	CO1							
17.	For a Binomial distribution the mean is 6 and standard deviation is $\sqrt{2}$. Find parameters of the distribution	BTL -1	Remembering	CO1							
18.	If 20% of the bolts produced by a machine are defective, Determine the probability that out of 4 bolts chosen at random exactly one defective.	BTL -2	Understanding	CO1							
19.	If the mean and variance of a binomial distribution are respectively 6 and 2.4, find $P(x=2)$.	BTL -2	Understanding	CO1							
20.	Write the probability function of Poisson Distribution.	BTL -2	Understanding	CO1							
21.	Suppose that, on an average, in every three pages of a book there is one typographical error. If the number of typographical errors on a single page of the book is a Poisson random variable. What is the	BTL -2	Understanding	CO1							
	probability if at least one error on a specific page of the book?			CO1							

	Find its mean and variance.			
23.	Suppose that X has a Poisson distribution with parameter $\lambda = 2$. Compute P[X ≥ 1].	BTL -1	Remembering	CO1
24.	Define Normal distribution.	BTL -2	Understanding	CO1
25.	State any two properties of normal distribution.	BTL -2	Understanding	CO1
	PART – B (16 MARK QUESTIONS)			
1.	Out of 2000 families with 4 children each, Find how many family would you expect to have i) at least 1 boy ii) 2 boys iii) 1 or 2 girls iv) no girls	BTL -2	Understanding	CO1
	The probability mass function of a discrete R. V X is given in the following table X 0 1 2 3 4 5 6 7 8			
2.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	BTL -2	Understanding	CO1
3.	and (v) CDT $ \begin{cases} ax, 0 \le x \le 1 \\ a, 1 \le x \le 2 \\ 3a - ax, 2 \le x \le 3 \\ 0, elsewhere \\ Calculate (i) the value of a ,(ii) the cumulative distribution function of X and (iii) If X1, X2 and X3 are 3 independent$	BTL -3	Applying	CO1
4. (a)	If the discrete random variable X has the probability function given by the table. x 1234 $P(x)$ $k/3$ $k/6$ $k/3$ $k/6$ Find the value of k and Cumulative distribution of X.	BTL -3	Applying	CO1
4.(b)	Find the MGF of Binomial distribution and hence find its mean and variance	BTL -3	Applying	CO1
5.	The probability mass function of a RV X is given by $P(X = r) = kr^3, r = 1,2,3,4$. Find (1) the value of k, (2) $P(\frac{1}{2} < X < \frac{5}{2}/X > 1)$, (3) Mean and (4) Variance	BTL -3	Applying	CO1
6.(a)	A random variable X has the following probability distribution: $\begin{array}{c c c c c c c c c c c c c c c c c c c $	BTL -3	Applying	CO1
6.(b)	Derive the MGF of Poisson distribution and hence find its mean and variance	BTL -3	Applying	CO1
7.	In an Engineering examination, a student is considered to have failed, secured second class, first class and distinction, according as he scores less than 45%, between 45% and 60% between 60% and 75% and above 75% respectively. In a particular year 10% of the students failed in the examination and 5% of the students get distinction. Find the percentage of students who have got first class and second class. Assume normal distribution of marks.	BTL -4	Analyzing	CO1
8. (a)	The probability mass function of a discrete R. V X is given in the	BTL -4	Analyzing	CO1

	following table:			
	<u>X</u> -2 -1 0 1 2 3			
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			
	Find (1) Find the value of k , (2) P(X<1), (2) P(1 < X < 2) (4) E(X)			
	(3) $P(-1 \le X \le 2)$, (4) $E(X)$ Messages arrive at a switch board in a Poisson manner at an average			
0.0	rate of 6 per hour. Find the probability that exactly 2 messages arrive			G (1
8.(b)	within one hour, no messages arrives within one hour and at least 3	BTL -4	Analyzing	CO1
	messages arrive within one hour.			
	(0, if x < -1)			
9.	A random variable X has cdf F(x) = $\begin{cases} a(1 + x), if - 1 < x < 1 \end{cases}$.	BTL -4	Analyzing	CO1
	(1) Find the value of a (2) P(X > 1/4) and P(-0.5 < X < 0)			
	(1) Find the value of a (2) $P(X > 1/4)$ and $P(-0.5 \le X \le 0)$. Let X be a continuous R.V with probability density function			
	· · ·			
10(a)	$f(x) = \begin{cases} xe^{-x}, & x > 0\\ 0, & otherwise \end{cases},$	BTL -3	Applying	CO1
10(<i>a</i>)		DIL-J	Apprying	COI
	Find (1) The cumulative distribution of X, (2)Moment Generating Function M (t) of X (3) $P(X < 2)$ and (4) $F(X)$			
	Function $M_x(t)$ of X, (3) $P(X<2)$ and (4) $E(X)$ Suppose that the life of a industrial lamp in 1,000 of hours is			
	exponentially distributed with mean life of 3,000 hours. Find the			
10(b)	probability that (i)The lamp last more than the mean life (ii) The lamp	BTL -3	Applying	CO1
	last between 2,000 and 3,000 hours (iii) The lamp last another 1,000			
	hours given that it has already lasted for 250 hours.			
	The number of monthly breakdown of a computer is a random variable			
11.	having a Poisson distribution with mean equal to 1.8. Find the probability that this computer will function for a month (1) without	BTL -4	Analyzing	CO1
11.	breakdown (2) with only one breakdown and (3) with at least one	DIL -4	Anaryzing	COI
	breakdown.			
	The number of monthly breakdown of a computer is a random variable			
	having a Poisson distribution with mean equal to 1.8. Find the			
12(a)	probability that this computer will function for a month (1) without	BTL -3	Applying	CO1
	breakdown (2) with only one breakdown and (3) with at least one breakdown.			
	Assume that 50% of all engineering students are good in mathematics.		<u> </u>	+
	Determine the probabilities that among 18 engineering students (i)			
12(b)	exactly 10,	BTL -3	Applying	CO1
	(ii) atleast 10 are good in mathematics.			
	A coin is biased so that a head is twice as likely to appear as a tail. If			
13.	A coin is biased so that a head is twice as likely to appear as a tail. If the coin is tossed 6 times, find the probabilities of getting	BTL -4	Analyzing	CO1
1.5.	(1) Exactly 2 heads, (2) at least 3 heads, (3) at most 4 heads.		1 Mary 2111g	
	A bank manager has learnt that the length of time the customers have			
	to wait for being attended by the teller is normally distributed with			
	mean time of 5 minutes and standard deviation of 0.8 minutes. Find the			
14	probability that a customer has to wait	BTL -3	Applying	CO1
	(i) For less than 6 minutes (ii) For more than 3.5 minutes and			
	(ii) For more than 3.5 minutes and(iii) Between 3.4 and 6.2 minutes.			
1 =	Suppose that the life of a industrial lamp in 1,000 of hours is			
15.	exponentially distributed with mean life of 3,000 hours. Find the	BTL -4	Analyzing	CO1

	and at it is that (i) The large last many then the many life (ii) The large			
	probability that (i)The lamp last more than the mean life (ii) The lamp last between 2,000 and 3,000 hours (iii) The lamp last another 1,000			
	hours given that it has already lasted for 250 hours.			
16.	Derive MGF, Mean, Variance of Normal distribution.	BTL -3	Applying	CO1
10.	If X follows a normal distribution with mean 12 and variance 16 cm,	DIL 5	rippijing	001
17.	find the probabilities for (i)P($X \le 20$)(ii) P($X \ge 20$), and	BTL -4	Analyzing	CO1
	(iii) $P(0 \le X \le 12)$		9	
10	X is a normal variable with mean 30 and standard deviation of 5. Find		A	CO1
18.	(i) $P[26 \le X \le 40]$ (ii) $P[X \ge 45]$ (iii) $P[X < 30]$	BTL -3	Applying	CO1
UNIT I	II- TWO - DIMENSIONAL RANDOM VARIABLES		·	
Joint di	stributions – Marginal and conditional distributions – Covariance – Correl	ation and	linear regression	
	PART-A(2 MARK QUESTIONS)	I		
1.	Define the conditional distribution function of two dimensional	BTL -1	Remembering	CO2
	discrete and continuous random variables .		Itemetineering	
	The joint probability distribution of X and Y is given by			
2.	$p(x, y) = \frac{x + y}{21}$, $x = 1, 2, 3$; $y = 1, 2$. Find the marginal probability	BTL -2	Understanding	CO2
			e	CO2
	distributions of X and Y. Find the much shifted distribution of $X + X$ from the bimointer			
	Find the probability distribution of $X + Y$ from the bivariate distribution of (X, Y) given below:			
3.	$\begin{array}{c c} \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	BTL -2	Understanding	
5.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	DIL-2	Understanding	CO2
	2 0.3 0.1			002
	The joint probability function (X,Y) is given by			
4.	P(x, y) = k (2x + 3y),	BTL -2	Understanding	CO2
	x = 0,1,2 $y = 1,2,3$, Find the value of K.		_	
	Let X and Y have the joint p.m.f			CO2
_	<u>Y X 0 1 2</u>			
5.	0 0.1 0.4 0.1	BTL -2	Understanding	
	1 0.2 0.2 0			
	Find $P(X+Y > 1)$			
	$\begin{pmatrix} 1 \\ 0 \leq n \end{pmatrix} \leq 2$			
6	If the joint pdf of (X, Y) is $f(x, y) = \begin{cases} \frac{1}{4}, 0 < x, y < 2\\ 0, otherwise \end{cases}$. Find $P(X + y) = \begin{cases} \frac{1}{4}, 0 < x, y < 2\\ 0, 0 \end{cases}$.	BTL -2	Understanding	CO2
U			onderstanding	
	$Y \le 1$) Let X and Y be random variables with joint density function			CO2
7.		BTL -2	Understanding	
	$f(\mathbf{x},\mathbf{y}) = \begin{cases} 4xy , & 0 < x < 1 \\ 0, & otherwise \end{cases}$ formulate the value of E(XY)			
	The joint probability density function of the random variable (X,Y) is			CO2
8	given by $f(x, y) = Kxye^{-(x^2 + y^2)}$, $x > 0$, $y > 0$	BTL -2	Understanding	
	Calculate the value of K. $y = 0$		Charlothing	
	If the joint probability density function of a random variable X and Y			
	$\begin{cases} x^3 y^3 \\ 0 \le x \le 2 \\ 0 \le y \le 2 \end{cases}$			
9.	is given by $f(x, y) = \begin{cases} \frac{x^3 y^3}{16}, 0 < x < 2, 0 < y < 2\\ 0, & otherwise \end{cases}$. Find the marginal	BTL -2	Understanding	
	U, otherwise			CO2
	functions of X and Y. $(x + y, 0 \le x \le 1, 0 \le y \le 1)$			
10	If X and Y have joint pdf $f(x,y) = \begin{cases} x + y, 0 < x < 1, 0 < y < 1 \\ 0, otherwise \end{cases}$		Understanding	CO2
10	Discuss whether V and V are independent	BTL -2	Understanding	
	Discuss whether X and Y are independent.			

11.	The joint probability density of a two dimensional random variable (X,Y) is given by $f(x,y) = \begin{cases} kxe^{-y}; & 0 \le x < 2, y > 0\\ 0, & otherwise \end{cases}$. Evaluate k.	BTL -2	Understanding	CO2
12.	The joint probability density function of a random varaiable (X, Y) is $f(x, y) = k e^{-(2x+3y)}, x \ge 0, y \ge 0$. Find the value of k.	BTL -1	Remembering	CO2
13.	If X,Y denote the deviation of variance from the arithmetic mean and if $\rho = 0.5$, $\sum XY = 120$, $\sigma_y = 8$, $\sum X^2 = 90$, Find n, the number of times.	BTL -2	Understanding	CO2
14.	The regression equations are $x + 6y = 14$ and $2x + 3y = 1$. Point out the correlation coefficient between X & Y.	BTL -1	Remembering	CO2
15.	If $\overline{X} = 970$, $\overline{Y} = 18$, $\sigma_x = 38$, $\sigma_y = 2$ and r =0.6, Find the line of regression and obtain the value of X and Y = 20.	BTL -4	Understanding	CO2
16.	In a partially destroyed laboratory, record of an analysis of correlation data, the following results only are legible; Varaince of $X = 9$; Regression equations are 8X - 10Y + 66 = 0 and $40X-18Y = 214$. Find the mean values of X and Y?	BTL -2	Understanding	CO2
17.	The regression equations are $3x + 2y = 26$ and $6x + y = 31$. Find the correlation coefficient.	BTL -2	Understanding	CO2
18.	State the correlation coefficient formula.	BTL -1	Remembering	CO2
19.	Give the acute angle between the two lines of regression.	BTL -2	Understanding	CO2
20.	If $f(x,y) = \begin{cases} kx^2y, 0 < x < 3, 0 < y < 5\\ 0 & otherwise \end{cases}$ is a pdf of X and Y.Find the value of k.	BTL -2	Understanding	CO2
21.	Define Marginal probability density function of Y.	BTL -2	Understanding	CO2
22.	Let X be a continuous random variable having the pdf of $f(x) = \begin{cases} 8xy , 0 < x < y < 1 \\ 0 & otherwise \end{cases}$ find marginal density function of X	BTL -2	Understanding	CO2
23.	Define Conditional probability distribution function of X given Y=y	BTL -1	Remembering	CO2
24.	Define Conditional probability distribution function of Y given X=x	BTL -2	Understanding	CO2
25.	The joint probability distribution of X and Y is given by $f(x,y)=x+y$, $x = 0,1,2; y = 1, 2$. Find the marginal probability distributions of X.	BTL -2	Understanding	CO2
	PART B (16 Mark Questions)		ſ	
1.	If the joint pdf of (X, Y) is given by $P(x, y) = K(2x + 3y), x = 0, 1, 2 \& y = 1, 2, 3$. Find all the marginal probability distribution. Also find the probability distribution of X+Y.	BTL -2	Understanding	CO2
2.	The joint pdf of X and Y is given by $f(x,y) = \begin{cases} kx(x-y), 0 < x < 2, -x < y < x \\ 0, & otherwise \end{cases}$ (i)Find K (ii) Find $f_x(x)$ and $f_y(y)$ (iii) $f_{\frac{y}{x}}\left(\frac{y}{x}\right)$	BTL -4	Analyzing	CO2
3.	The joint pdf of a two dimensional random variable (X, Y) is given by $f(x, y) = xy^{2} + \frac{x^{2}}{8}, 0 \le x \le 2, 0 \le y \le 1.$ Compute (i) $P\left(X > 1 / Y < \frac{1}{2}\right)$ (ii) $P\left(Y < \frac{1}{2}/X > 1\right)$ (iii) $P(X + Y) \le 1.$	BTL -3	Applying	CO2

4. (a)	The joint distribution of X and Y is given by $f(x, y) = \frac{x+y}{21}$, $x = 1,2,3; y = 1,2$. Find the marginal distributions of X and Y.	BTL -4	Analyzing	CO2
4.(b)	The joint pdf a bivariate R.V(X, Y) is given by $f(x,y) = \begin{cases} Kxy ; & 0 < x < 1, 0 < y < 1 \\ 0 & , otherwise \end{cases}$ Find (1) K. (2) Find P(X+Y<1). (3)Are X and Y independent R.V's.	BTL -4	Analyzing	CO2
5.(a)	The two dimensional random variable (X, Y) has the joint probability mass function $f(x, y) = \frac{x+2y}{27}$, $x = 0,1,2$; y = 0,1,2. Find the conditional distribution of Y given X = 1 also find the conditional distribution of X given Y = 1.	BTL -3	Applying	CO2
5.(b)	Find $P(X < Y/X < 2Y)$ if the joint pdf of (X, Y) is $f(x, y) = e^{-(x+y)}, 0 \le x < \infty, 0 \le y < \infty.$	BTL -3	Applying	CO2
6.	From the following table for bivariate distribution of (X, Y). Find (i) $P(X \le 1)$ (ii) $P(Y \le 3)$ (iii) $P(X \le 1, Y \le 3)$ (ii) (iv) $P(X \le 1/Y \le 3)$ (v) $P(Y \le 3/X \le 1)$ (iii) (vi) $P(X + Y \le 4)$ X 1 2 3 4 5 6 0 0 0 1 2 2 3 32 32 32 32 32	BTL -3	Applying	CO2
7.	If the joint pdf of a two-dimensional RV(X,Y) is given by $f(x,y) = \begin{cases} x^2 + \frac{xy}{3}; 0 < x < 1, 0 < y < 2 \\ 0, elsewhere \end{cases}$ Find (i) $P\left(X > \frac{1}{2}\right)$ (ii) $P(Y < X)$ and (iii) $P\left(Y < \frac{1}{2} / X < \frac{1}{2}\right)$	BTL -3	Applying	CO2
8.	If $f(x,y) = \frac{6-x-y}{8}$, $0 \le x \le 2$, $2 \le y \le 4$ for a bivariate random variable (X,Y), Find the correlation coefficient ρ .	BTL -4	Analyzing	CO2
9.	From the following data , Find (i)The two regression equations (ii) The coefficient of correlation between the marks in Mathematics and Statistics (iii) The most likely marks in Statistics when marks in Mathematics are 30 Marks in Maths : 25 28 35 32 31 36 29 38 34 32 Marks in Statistics: 43 46 49 41 36 32 31 30 33 39	BTL -4	Analyzing	CO2
10.	Find the correlation coefficient for the following heights of fathers X,their sons Y and also find the equations of regression lines. Hence findthe height of son when the height of father is 71 X 6566676768697072Y6768656872726971	BTL -3	Applying	CO2
11.	Two random variables X and Y have the following joint probability	BTL -4	Analyzing	CO2

	-									
	density fur	nction $f(x)$	$(x, y) = \begin{cases} x - y \\ y \\ y \end{cases}$	ind the						
						e = U = XY.				
	Two random variables X and Y have the joint density x = (2 - x - y, 0 < x < 1, 0 < y < 1)									
12.	$f(\mathbf{x}, \mathbf{y}) = \begin{cases} 2 - x - y, \ 0 < x < 1, \ 0 < y < 1 \\ 0, \ otherwise \end{cases}$							BTL -3	Applying	CO2
	-				etween X	and Y is -1	/11.			
-	If X, Y are						,			
	f(x,y) =									
13.	Find $(i) P$							BTL -3	Applying	CO2
	ii) P ([x < 1/y]	< 3) ii		-)				
			<i>iv)</i> F	P(X + Y)	< 3)					
14						in a correla	tion		A 1 '	000
14.	analysis is		•		•	6. n value of	V & V	BTL -3	Applying	CO2
					. ,	s given belo				
	The joint p	noouonny	Y X	-		1	5 W			
15.			0	1/	8	3/8		BTL -4	Analyzing	CO2
			1	2/	8	2/8				002
	Find the co	orrelation	coefficient	of X an	d Y	12.4				
	The joint p	orobability	distributio	on of the	random v	ariables X	and Y is			
	given belo	W		3	10	100	0			
	Y	1	2	3	1	5	6			
	X	1	2	5	SINI		0			
	0	0	0	2K	4K	4K	6K	-		
16.					2 6			BTL -2	Understanding	CO2
	1	4K	4K	8K	8K	8K	8K			
	2	2K	2K	K	K	0	2K			
	Find (i)Va	lue of K a	nd margina	al probat	oility distri	bution of	X and Y			
	(ii) $P(X \leq$	1)(iii)(<i>X</i>	$\leq 1/Y =$	2)(iv) P	(X < 3/Y)	′ <u>≤</u> 4)				
	The two li	nes of reg	ression are	4x-5y+3	33=0 and					CO2
17.	-				-	the coeffici		BTL -4	Analyzing	
						and σ_x if σ_x	_y =3.			
40	Find the co				_	data T				
18.	X 22	26 29			34 35	_		BTL -3	Applying	CO2
TINITT	Y 20 III - ESTIM	20 21	29 27		27 31					
					-Sufficien	cv-Robust	ness-meth	ad of mom	ents-method of	
	um likeliho		•	sistency	-Sumeren	cy-Robust	11055-1110011		ents-method of	
				PART-A	(2 Mark	Questions)				
1.	Define est	timator, es	timate and			• /		BTL -1	Remembering	CO3
2.	Ŭ		-			estimatior	1.	BTL -1	Remembering	CO3
3.			ties of a go		ator.			BTL -1	Remembering	CO3
4.			coefficient.					BTL -2	Understanding	CO3
5.	What is th	e level of	significan	ce in test	ing of hyp	othesis?		BTL -1	Remembering	CO3
6	Define co	nfidence 1	imits for a	paramet	er.			BTL -2	Understanding	CO3
				*		bution bec	omes a		0	CO3
7.	normal dis							BTL -2	Understanding	

8	Explain how do you calculate 95% confidence interval for the average of the population?	BTL -1	Remembering	CO3
9.	Write the normal equations for fitting a straight line by the method of least squares.	BTL -1	Remembering	CO3
10	An automobile repair shop has taken a random sample of 40 services that the average service time on an automobile is 130 minutes with a standard deviation of 26 minutes. Compute the standard error of the mean.	BTL -2	Understanding	CO3
11.	Two variables X and Y have the regression lines $3X + 2Y - 26 = 0$, $6X + Y - 31 = 0$, Find the mean value of X and Y.	BTL -2	Understanding	CO3
12.	State any two properties of regression lines.	BTL -1	Remembering	CO3
13.	Define unbiasedness of a good estimator.	BTL -2	Understanding	CO3
14.	Let the lines of regression concerning two variables x and y be given by $y = 32 - x$ and $x = 13 - 0.25y$. Obtain the values of the means.	BTL -2	Understanding	CO3
15.	What are the merits and demerits of the least square method.	BTL -1	Remembering	CO3
16.	What is a sufficient statistic in estimation theory?	BTL -1	Remembering	CO3
17.	State the Neyman-Fisher Factorization Theorem and its significance in identifying sufficient statistics.	BTL -2	Understanding	CO3
18.	Give the normal equations to fit the parabola $y = a + bx + cx^2$	BTL -2	Understanding	CO3
19.	Can $Y = 5 + 2.8x$ and $X = 3 - 0.5$ y be the estimated regression equations of y on x and x on y respectively ? Explain.	BTL -1	Remembering	CO3
20.	Obtain the maximum likelihood estimator of $f(x, \theta) = (1 + \theta)x^{\theta}, 0 < x < 1$ based on a random sample of size x.	BTL -1	Remembering	CO3
21.	What is the sufficiency property of an estimator?	BTL -2	Understanding	CO3
22.	What does it mean for an estimator to be consistent?	BTL -1	Remembering	CO3
23.	What is the definition of an efficient estimator in estimation theory?	BTL -2	Understanding	CO3
24.	Find the maximum likelihood estimates for the population mean when the population variance is known for random sampling from a normal population.	BTL -1	Remembering	CO3
25.	What is meant by maximum likelihood estimator ?	BTL -2	Understanding	CO3
	PART-B (16 Marks Questions)			
1.	 For a random sampling from a normal population find the maximum likelihood estimators for i) The population mean, when the population variance is known. ii) The population variance, when the population mean is known. iii) The simultaneous estimation of both the population mean and variance. 	BTL -3	Applying	CO3
2.	X 50 55 50 60 65 65 60 60 Y 11 14 13 16 16 15 14 13	BTL -3	Applying	CO3
3.	The price of a commodity during 93-98 are given below. Fit a parabola $y = a + bx + cx^2$ to these data. Calculate the trend values, estimate the period of the commodity for the year 1999. x 1993199419951996 y 100107128140	BTL -3	Applying	CO3
4.	The following data relate to the marks of 10 students in the internaltest and the university examinationfor the maximum of 50 ineach.Internal Marks : 25 28 30 32 35 36 38 39 4245	BTL -3	Applying	CO3

	UniversityMarks : 20 26 29 30 25 18 26 35 35			
	46 a) Obtain the equations of the lines of regression			
	b) The most likely internal mark for the university mark of 25			
	c) The most likely university mark for the internal mark of 30.			
5.	Find the maximum likelihood estimate for the parameter λ of a poisson distribution on the basis of a sample of size n. Also find its variance. Show that the sample mean x is sufficient for estimating the parameter λ of the poisson distribution.	BTL -3	Applying	CO3
	Fit a straight line $y = a + bx$ for the following data by the principle of			
6.	least squares. X: 0 1 2 3 4 Y: 1 1.8 3.3 4.5 6.3 Also find the value of y when x = 1.5	BTL -2	Understanding	CO3
	A random sample $(X_1, X_2, X_3, X_4, X_5)$ of size 5 is drawn from a			
	population with unknown mean μ .			
	Consider the following estimators to estimate μ .			
7. (a)	$t_1 = \frac{(x_1 + x_2 + x_3 + x_4 + x_5)}{5}, t_2 = \frac{(x_1 + x_2)}{2} + X_3 \text{ and } t_3 = \frac{(2x_1 + x_2 + \lambda x_5)}{3}$	³ Brikert	a Analyzing	CO3
	is such that t ₃ is an unbiased estimator of μ . Find λ . Are t ₁ and t ₂			
	unbiased? State giving reason, the estimator which is best among			
	t ₁ ,t ₂ ,and t ₃ .			
7.(b)	Let X_1, X_2, \dots, X_n be a random sample of size n from a normal distribution with known variance. Obtain the maximum likelihood	BTL -4	Analyzing	CO3
7.(0)	estimator of μ .	DIL-4	7 mary 2mg	005
	The following are the measurements of the air velocity and			
	evaporation coefficient of burning fuel droplets in an impulse engine			
	Air Velocity (cm/s) : 20 60 100 140 180 220			
	260 300 340 380			
8.	Evaporation Coeff : 0.18 0.37 0.35 0.78 0.56 0.75	BTL -4	Analyzing	CO3
	Evaporation Coeff : 0.18 0.37 0.35 0.78 0.56 0.75 1.18 1.36 1.17 1.65			
	Fit a straight line to these data by the method of least squares, and use			
	it to estimate the evaporation coefficient of a droplet when the air			
	velocity is 190 cm/s. Fit an equation of the form $y = ab^x$ to the following data			
9.	x 2 3 4 5 6	BTL -4	Analyzing	CO3
	y 144 172.8 207.4 248.8 298.5			
	Obtain the equation of regression lines $y = ax + b$ from the following data, using the method of least squares.			
10.	X 6 3 6 9 3 9 6 3 9 6 3 9	BTL -4	Analyzing	CO3
	y 526 421 581 630 412 560 43 443 590 570 34 672 6			
	Fit a straight line $y = ax + c$ to the following data.			
11.(a)	X 1 3 5 7 9 11 13 15 17 10 15 20 27 21 25 20 25 40	BTL -4	Analyzing	CO3
	y 10 15 20 27 31 35 30 35 40 Find the regression line of Y on X for the data			
11.(b)	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	BTL -4	Analyzing	
	y 3 1 2 5 4			CO3

			A 1 ·	
	Prove that the ML estimator of the parameter α of the population	BTL-4	Analyzing	
12.	having pdf $f(x,\alpha) = 2/\alpha^2 (\alpha - x)$. $0 < x < \alpha$ for the sample of unit size			CO3
	is 2x, x being the sample value. Show also that the estimator is not unbiased.			
	Fit a straight line trend of the form $y = a + bx$ to the data given below			
	by the method of least squares and predict the value of y when $x = 70$			G 0 0
13.	X 71 68 73 69 67 65 66 67	BTL -3	Applying	CO3
	y 69 72 70 70 68 67 68 64			
	Fit the model $y = ax^b$ to the following data.	BTL-3	Applying	
14.	X 1 2 3 4 5 6			CO3
	y 2.98 4.26 5.21 6.10 6.80 7.50			
	If the two variables x and y have the regression lines $3x + 2y = 26$ and	BTL-4	Analyzing	
15.	6x + y = 31. Find i) Find the mean value of x and y			CO3
	ii)Find the correlation coefficient of x and y.			
16.	Fit an equation of the form $y = ab^x$ to the following data x 2 3 4 5 6	BTL -3	Applying	CO3
10.	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	DIL-J	Applying	005
	Obtain the equation of regression lines $y = ax + b$ from the following	BTL-4	Analyzing	
	data, using the method of least squares.		····] _···B	
17.	X 6 3 6 9 3 9 6 3 9 6 3 9			CO3
	y 52 42 58 630 412 560 43 443 59 57 34 67			
	6 1 1 4 0 6 2			
	Let X_1, X_2, \dots, X_n be a random sample size n from the Poisson			
18.	distribution $f(x/\lambda) = \frac{\lambda^x e^{-\lambda}}{x!}$ where $0 \le \lambda \le \infty$. Obtain the	BTL -3	Applying	CO3
	maximum likelihood estimator of λ			
	-IV NON-PARAMETRIC TESTS uction- Rank -sum testThe U te <mark>st –</mark> The H-Test <mark>-Th</mark> e Kolmogoro	w tosts		
mirou	PART-A(2 Mark Questions)			
1.	Define H test .	BTL -1	Remembering	CO4
2.	Define Rank-Sum test.	BTL -1	Remembering	CO4
3.	Mention the advantages of Non - parametric Tests.	BTL -1	Remembering	CO4
4. 5.	What is the other name or non-parametric test? Why?	BTL -2	Understanding	CO4
<u> </u>	When are non-parametric tests used? What is the null hypothesis framed in Mann-Whitney test?	BTL -2 BTL -1	Understanding Remembering	CO4 CO4
	Write down the working rule for Mann-Whitney U-test and Kruskal-			
7.	Wallis test.	BTL -1	Remembering	CO4
ο			Understor	COA
8	Explain sign test.	BTL -2	Understanding	CO4
9.	Define one sample run test?	BTL -1	Remembering	CO4
).		DIL-I	Kemembernig	04
10	When is Krushkal-Wallis test used?	BTL -1	Remembering	CO4
11.	Distinguish between Mann-Whitney U-test and Krushkal-Wallis test.	BTL -2	Understanding	CO4
12.	How can you perform sign Test?	BTL -2	Understanding	CO4
13.	Explain Kolmogorov-Smirnov Test for one sample problem.	BTL -2	Understanding	CO4
14.	What are the non-parametric tests available?	BTL -2	Understanding	CO4
•		-		

15.	Mention the disadvantages of Non parametric Tests.	BTL -2	Understanding	CO4
16.	State any three Non Parametric test.	BTL -1	Remembering	CO4
17.	How do the non parametric methods differ from parametric methods?	BTL -2	Understanding	CO4
18.	Define Rank sum test.	BTL -2	Understanding	CO4
19.	Write the formula of test statistics for Kolmogorov-Smirnov Test	BTL -2	Understanding	CO4
20.	Define the statistic used in U test and give its mean.	BTL -1	Remembering	CO4
21.	Write a short note of Krushkal Wallis test.	BTL -2	Understanding	CO4
22.	Write a note on non parametric test.	BTL -2	Understanding	CO4
23.	Write the formula of test statistics for Krushkal Wallis test	BTL -1	Remembering	CO4
24.	When is Mann- Whiteney U test used?	BTL -2	Understanding	CO4
25.	Write the formula of test statistics for Mann- Whiteney U test	BTL -2	Understanding	CO4
	PART-B (16 Mark Questions)			
1.	Sand I 63 17 35 49 18 43 12 20 47 In a study " 136 51 45 84 32 40 44 25 In a study Sand II 113 54 96 26 39 88 92 53 101 of sedi " 48 89 107 111 58 62 In a study of sedi ary rocks, the following data were obtained from samples of 32 grains from two kinds of sand. Apply Mann-Whitney U test with suitable null and alternative hypotheses. and the set of t	BTL -3	Applying	CO4
2.	In 30 tosses of a coin, the following sequence of head and tails is obtained HTTHTHHHTHHTHTHTHTHTHTHTHTHTHTHTHTHTHT	BTL -4	Analyzing	CO4
3.	On tossing a coin 15 times the following sequence of heads H and tails T was obtained TTHHHTHHHHTTHH. Test whether the coin is unbiased by the run test.	BTL -3	Applying	CO4
4.	25 individual were sample as two whether they liked or did not like a productThe resulting sample is obtained belowLLNNNNLLLNLNNLNNNNNLLLLNN. (i) Determine the number of runs (ii) Test at the 0.05 level of significance, whether the responses are random.	BTL -3	Applying	CO4
5.	The following is an arrangement of 25 mena dn 15 women lined up up to purchase tickets for a premier picture show. Test the randomness of the arrangement for the following data. MWWMMMWMWWWWMMMWWWMMMMMMM WWWMMMMMMMM	BTL -3	Applying	CO4
6.	The following are the prices in Rs. per kg of a commodity from 2 random samples of shops from 2 cities A&B. City A 2.7 3.8 4.3 3.2 4.7 3.6 3.8 4.1 2.7 2.8 3.2 3.4 3.8 4.4 4.9 3.9 4.7 City B 3.7 5.3 4.7 3.6 4.4 4.9 3.9 4.7 City B 3.7 5.3 4.7 3.6 4.7 4.8 6.0 4.8 4.9 3.8 3.9 4.8 5.2 6.1 3.6 3.8 4.9	BTL -3	Applying	CO4

	Apply the run test to ex	xamine v	vhether	the dis	tributic	on of pr	ices of	commodity			
	in the two cities is the					n or pr	1005 01	e o mini o ano j			
	An experiment desig	ods									
	against corrosion yie			0		-	-	,			
	thousands of an inch	in piec	es of v	vire sul	bjected	l to the	e respec	ctive			
	treatments:										
7.	Method A: 77	54	67	74	71	66			BTL -3	Applying	CO4
	Method B: 60	41	59	65	62	64	52				
	Method C: 49	52	69	47	56						
	Use the Kruskal-Wal	lis test a	at the 5	% leve	el of si	gnifica	nce to	test the			
	null hypothesis that t	he three	sampl	es con	ne fron	n ident	ical po	pulations.			
	The following are the						-				
	kind of 2 inch cotton										
8.	hypothesis of 0.05 L								BTL -3	Applying	CO4
	163 165 160	189	161	171	158	151	169	162			
	163 139 172	165	148	166	172	163	. 187	173			
	Apply the K-S test t					-					
	the expected frequen (Given at $n=5$, D, $=0$)				ied fro	nii inoi	rmai di	stribution.			
9.	(Given at n=5, $D_n = 0$) Test Score		61-7		-80	81-90	91-1	00	BTL -3	Applying	CO4
	Observed Frequency		1		11000					11 7 0	
		30	100		40	500	13				
	Expected Frequency	40	170		00	390	10	-			_
	The following data represents the number of hours that a rechargeable hedge trimmer operates before a recharge is required.										
10.	U I			0			Sign t	ast to tast	BTL -4	Analyzing	CO4
10.	1.5,2.2,0.9,1.3,2.0,1.6,1.8,1.5,2.0,1.2 and 1.7. Use the Sign test to test the hypothesis of the 0.05 LOS that this particular trimmer operates									Anaryzing	04
	with a mean of 1.8 hours before requiring a recharge.										
	From a Maths class of					-	ng a pro	ogrammed			
	material, 5 are select	-	0								
	the teacher. The resu	lts on th	e final	exam	is as fo	ollows.					
11.	Additional Instructio			78 91					BTL -3	Applying	CO4
	No Additional Instru										
	Use the Rank Sum test at 5% LOS to determine if the additional										
	instruction affects the				(T Z)	1.41					
	The following are the set is f_{0} and f_{0} for 1										
10	satisfaction (Y) for 10 service providers. Is there a significant rank correlation between two measures? Use the 0.05 level of significance.									A a slavnin s	CO4
12.							of sign	incance.	BTL -4	Analyzing	CO4
	X: 6.3 5.8 6.1 6.9 3.4 1.8 9.4 4.7 7.2 2.4 Y: 5.3 8.6 4.7 4.2 4.9 6.1 5.1 6.3 6.8 5.2										
	The scores of a writte						o were	trained by			
	using three different r					,					
		4 88	82 93		70 6	5					
13.		8 80	65 5		85 7				BTL -4	Analyzing	CO4
10.		8 83	50 9			4 81	92		DIL	i mary zmg	001
								an tha thread			
	Use Krushkal-Wallis methods of training y				signifi	icance,	whethe	er une unree			
	Apply the K-S test to				ved fre	equenc	ies mat	tch with			
	the expected frequen					-					
14.	(Given at n=7, $D_n = 0$								BTL -3	Applying	CO4
17,		25-30 31-36 37-42 43-48 49-54 55-60 61-66						66	Apprynig	rr-,8	
	Observed 9	22	25	30	21	12					
						•					

	Fraguanay	<u> </u>										Т	
	Frequency	<u> </u>											
	Expected Frequency	6 17	32	35	18	8	13	4					
	The nicotine	content (of two	brande	of	ciga	rettes	me	20111	red in			
	milligrams was				01	ciga	nettes,	mea	isui	icu ii	Ĺ		
15.	Brand A: 2.1 4				33						BTL-4	Analyzing	CO4
10.	Brand B: 4.1 0					.9 5	.4					7 mary 2mg	01
	Use the Rank S					.,	• •						
	The production				led by	y thr	ee diff	erent	op	erators	;		
	during 9 shifts				-								
	difference betwee	-								e three	;		
16.	operators using								<i>.</i>		BTL -3	Applying	CO4
	Operator I	29 34		20 32				5					
	Operator II	30 21		25 44	37			8					
	Operator III	26 36		48 27	<u>39</u>		-	5		1			
	Melisa's Boutic	-					-		-	record			
	for each locatio purchase. A san									ic tact			
	can you say at t												
17.	same number of					iai iii		25 Ha	101	lic	BTL -3	Applying	CO4
	DSF Mall		4 101		88	97	95	90	100	0			001
	Forest Mall)2 125					98	75				
	Big-Ben Mall			105 8				76	89				
													001
10			ey test p	orocedu	re wit		-		am	ples			CO4
18.	Explain the Ma		ey test p	procedu	re wit		-		am	ples	BTL -4	Analyzing	CO4
	Explain the Ma	nn-Whitne	1		8	h app	propria		am	ples	BTL -4	Analyzing	CO4
UNIT	Explain the Ma	nn-Whitne	QUAI	LITY (CON	h app	propria OL	ite ex	-	2			
UNIT Contr	Explain the Ma -V: STATIS ol charts for 1	nn-Whitne FICAL (neasure	QUAI ments	LITY ((X an	CON d R (h app TRC chai	propria OL rts) –	ite ex	-	2		Analyzing tributes (p,c an	
UNIT Contr	Explain the Ma	nn-Whitne FICAL (neasure	QUAI ments ts – Ac	LITY ((X an ccepta	CON d R (nce s	h app TRC chan amj	propria OL rts) – pling	te ex Con	-	2			
UNIT Contr	Explain the Ma -V: STATIS ol charts for 1	nn-Whitne FICAL neasure nce limi	QUAI ments ts – Ac PA	LITY ((X an ccepta ART-A	CON d R (nce s	h app TRC chan amj	propria OL rts) – pling	te ex Con	-	2		tributes (p,c a	
UNIT Contr np cha	Explain the Ma -V: STATIS ol charts for 1 arts) – Tolera What is Statistic	nn-Whitne FICAL neasure nce limi	QUAI ments ts – Ac PA contro	LITY ((X an ccepta ART-A 1?	CON d R (nce s	h app TRC chan amj	propria OL rts) – pling	te ex Con	-	2	BTL-2	tributes (p,c and Understanding	nd CO5
UNIT Contr np cha	Explain the Ma -V: STATIS ol charts for 1 arts) – Tolera What is Statistic Write down adv	nn-Whitne FICAL neasure nce limi cal quality rantage of	QUAI ments ts – Ac PA contro SQC.	LITY ((X an ccepta ART-A 1?	CON d R (nce s	h app TRC chan amj	propria OL rts) – pling	te ex Con	-	2	nrts for at	tributes (p,c a	nd
UNIT Contr np cha 1. 2.	Explain the Ma -V: STATIS ol charts for 1 arts) – Tolera What is Statistic	nn-Whitne FICAL neasure nce limi cal quality rantage of by chance	QUAI ments ts – Ao PA contro SQC. variatio	LITY ((X an ccepta ART-A 1?	CON d R (nce s	h app TRC chan amj	propria OL rts) – pling	te ex Con	-	2	BTL-2 BTL-1	tributes (p,c a Understanding Remembering	nd CO5 CO5
UNIT Contr np cha 1. 2. 3.	Explain the Ma -V: STATIS ol charts for 1 arts) – Tolera What is Statistic Write down adv What is meant b	nn-Whitne FICAL neasure nce limi cal quality cantage of by chance by Assignation	QUAI ments ts – A PA contro SQC. variation able variation	LITY ((X an ccepta ART-A 1? on? riation?	CON d R (nce s	h app TRC chan amj	propria OL rts) – pling	te ex Con	-	2	BTL-2 BTL-1 BTL-2	Understanding Understanding Understanding	nd CO5 CO5 CO5
UNIT Contr np cha 1. 2. 3. 4.	Explain the Ma -V: STATIS ol charts for 1 arts) – Tolera What is Statistic Write down adv What is meant b What is meant b	nn-Whitne FICAL neasure nce limi cal quality cantage of by chance by Assignation of Control	QUAI ments ts – A PA contro SQC. variation able variation	LITY ((X an ccepta ART-A 1? on? riation?	CON d R (nce s	h app TRC chan amj	propria OL rts) – pling	te ex Con	-	2	BTL-2 BTL-1 BTL-2 BTL-2 BTL-2	Understanding Remembering Understanding Understanding	nd CO5 CO5 CO5 CO5 CO5
UNIT Contr np cha 1. 2. 3. 4. 5.	Explain the Mar -V: STATIS rol charts for r arts) – Tolera What is Statistic Write down adv What is meant b What is meant b Name the types	nn-Whitne FICAL neasure nce limi cal quality antage of by chance by Assignation of Control	QUAI ments ts – A PA contro SQC. variation able variation	LITY ((X an ccepta ART-A 1? on? riation?	CON d R (nce s	h app TRC chan amj	propria OL rts) – pling	te ex Con	-	2	BTL-2 BTL-2 BTL-2 BTL-2 BTL-2 BTL-2 BTL-2 BTL-1 BTL-1 BTL-2	Understanding Remembering Understanding Understanding Remembering Remembering Remembering	nd CO5 CO5 CO5 CO5 CO5 CO5
UNIT Contr np cha 1. 2. 3. 4. 5. 6	Explain the Ma -V: STATIS rol charts for 1 arts) – Tolera What is Statistic Write down adv What is meant b What is meant b Name the types Define product	nn-Whitne FICAL neasure nce limi cal quality cal quality cantage of by chance by chance by chance of Control control	QUAI ments ts – A PA contro SQC. variation able variation	LITY ((X an ccepta ART-A 1? on? riation?	CON d R (nce s	h app TRC chan amj	propria OL rts) – pling	te ex Con	-	2	BTL-2 BTL-2 BTL-2 BTL-2 BTL-2 BTL-2 BTL-2 BTL-1	tributes (p,c and Understanding Remembering Understanding Remembering Remembering	nd CO5 CO5 CO5 CO5 CO5 CO5 CO5
UNIT Contr np cha 1. 2. 3. 4. 5. 6 7.	Explain the Ma -V: STATIS rol charts for 1 arts) – Tolera What is Statistic Write down adv What is meant b What is meant b Name the types Define product Define process What is control Write down use	nn-Whitne FICAL neasure nce limi cal quality cal quality catage of by chance by Assignation of Control control control Chart? s of Mear	QUAI ments ts – Ao PA contro SQC. variatio able van ol Chart	LITY ((X an ccepta ART-A 1? on? ciation?	CON d R d nce s (2 Ma	h app TR(chan ark (propria OL rts) – pling	te ex Con	-	2	BTL-2 BTL-2 BTL-2 BTL-2 BTL-2 BTL-2 BTL-2 BTL-1 BTL-1 BTL-2	tributes (p,c and Understanding Remembering Understanding Remembering Remembering Remembering Remembering Remembering Remembering Understanding	nd CO5 CO5 CO5 CO5 CO5 CO5 CO5 CO5
UNIT Contr np cha 1. 2. 3. 4. 5. 6 7. 8	Explain the Mar -V: STATIS ol charts for 1 arts) – Tolera What is Statistic Write down adv What is meant b What is meant b What is meant b Name the types Define product Define product Define process What is control Write down use Write down typ	nn-Whitne FICAL neasure nce limi cal quality antage of by chance by Assignation of Control control control Chart? s of Mear es of Acce	QUAI ments ts – Ao PA contro SQC. variatio able van ol Chart	LITY ((X an ccepta ART-A 1? on? ciation?	CON d R d nce s (2 Ma	h app TR(chan ark (propria OL rts) – pling	te ex Con	-	2	BTL-2 BTL-2 BTL-2 BTL-2 BTL-2 BTL-2 BTL-2 BTL-1 BTL-2 BTL-2 BTL-2	tributes (p,c and Understanding Remembering Understanding Remembering Remembering Remembering Remembering	nd CO5 CO5 CO5 CO5 CO5 CO5 CO5 CO5 CO5
UNIT Contr np cha 1. 2. 3. 4. 5. 6 7. 8 9. 10 11.	Explain the Ma -V: STATIS rol charts for 1 arts) – Tolera What is Statistic Write down adv What is meant b What is meant b What is meant b Name the types Define process What is control Write down use Write down typ Define OC Cur	nn-Whitne FICAL neasure nce limi cal quality antage of by chance by chance by Assignation of Control control control Chart? s of Mear es of Acco ye	QUAI ments ts – Ao PA contro SQC. variationable van of Chart Chart	LITY ((X an ccepta ART-A 1? on? tiation?	CON d R d nce s (2 Ma	h app TR(chan ark (propria OL rts) – pling	te ex Con	-	2	BTL-2 BTL-2 BTL-2 BTL-2 BTL-2 BTL-2 BTL-2 BTL-2 BTL-2 BTL-2 BTL-2 BTL-2 BTL-2 BTL-2 BTL-2	tributes (p,c and Understanding Remembering Understanding Remembering Remembering Remembering Remembering Understanding Understanding Understanding Applying	nd CO5 CO5 CO5 CO5 CO5 CO5 CO5 CO5 CO5 CO5
UNIT Contr np cha 1. 2. 3. 4. 5. 6 7. 8 9. 10 11. 12.	Explain the Ma -V: STATIS ol charts for 1 arts) – Tolera What is Statistic Write down adv What is meant b What is meant b Name the types Define product Define product Define process What is control Write down use Write down typ Define OC Curr Write down typ	nn-Whitne FICAL neasure nce limi cal quality cal quality cal quality cal quality contage of by chance by chance by chance of Control control Chart? s of Mear es of Acco ye es of Caus	QUAI ments ts – Ao PA contro SQC. variatic able var d Chart chart. eptance	LITY ((X an ccepta ART-A 1? on? tiation?	CON d R d nce s (2 Ma	h app TR(chan ark (propria OL rts) – pling	te ex Con	-	2	BTL-2 BTL-2 BTL-2 BTL-2 BTL-2 BTL-2 BTL-2 BTL-2 BTL-2 BTL-2 BTL-2 BTL-2 BTL-2 BTL-2 BTL-2 BTL-2	Understanding Remembering Understanding Understanding Remembering Remembering Remembering Remembering Understanding Understanding Understanding Applying Understanding	nd CO5 CO5 CO5 CO5 CO5 CO5 CO5 CO5 CO5 CO5
UNIT Contr np cha 1. 2. 3. 4. 5. 6 7. 8 9. 10 11.	Explain the Ma -V: STATIS rol charts for r arts) – Tolera What is Statistic Write down adv What is meant b What is meant b What is meant b Name the types Define process What is control Write down use Write down typ Define OC Cur Write down typ Write down typ	nn-Whitne FICAL neasure nce limi cal quality antage of by chance by Assigna of Control control Chart? s of Mear es of Acco ye es of Caus la for np	QUAI ments ts – Ao PA contro SQC. variation able van of Chart chart eptance ses vari chart.	LITY ((X an ccepta ART-A 1? on? riation? samplin ation.	CON d R d nce s (2 Ma	h app TR(chan ark (propria OL rts) – pling	te ex Con	-	2	BTL-2 BTL-2 BTL-2 BTL-2 BTL-2 BTL-2 BTL-2 BTL-2 BTL-2 BTL-2 BTL-2 BTL-2 BTL-2 BTL-2 BTL-2	tributes (p,c and Understanding Remembering Understanding Remembering Remembering Remembering Remembering Understanding Understanding Understanding Understanding Understanding	nd CO5 CO5 CO5 CO5 CO5 CO5 CO5 CO5 CO5 CO5
UNIT Contr np cha 1. 2. 3. 4. 5. 6 7. 8 9. 10 11. 12. 13. 14.	Explain the Ma -V: STATIS ol charts for I arts) – Tolera What is Statistic Write down adv What is meant b What is meant b Name the types Define process What is control Write down use Write down typ Define OC Curr Write down typ Write the formu What is meant b	nn-Whitne FICAL neasure nce limi cal quality cal quality cal quality cal quality contage of by chance by chance control control Chart? s of Mear es of Acco ve es of Caus la for np by AQL an	QUAI ments ts – Ao PA contro SQC. variatio able van d Chart chart. eptance ses vari chart. nd LTP	LITY ((X an ccepta ART-A 1? on? riation? samplin ation.	CON d R o nce s (2 Ma	h app TR(chan ark (propria OL rts) – pling	te ex Con	-	2	BTL-2 BTL-2	tributes (p,c and Understanding Remembering Understanding Understanding Remembering Remembering Remembering Remembering Understanding Understanding Understanding Understanding Understanding	nd CO5 CO5 CO5 CO5 CO5 CO5 CO5 CO5 CO5 CO5
UNIT Contr np cha 1. 2. 3. 4. 5. 6 7. 8 9. 10 11. 12. 13.	Explain the Mar -V: STATIS ol charts for 1 arts) – Tolera What is Statistic Write down adv What is meant b What is meant b Name the types Define product Define product Define process What is control Write down use Write down typ Define OC Curr Write down typ Write down typ Write down typ Write the formu What is meant b What is the formu	nn-Whitne FICAL neasure nce limi cal quality cal quality cal quality cal quality cal quality contage of by chance by chance control Control Chart? s of Mear es of Acco ye es of Caus la for np by AQL an nula for c	QUAI ments ts – Ao PA contro SQC. variationable van able	LITY ((X an ccepta ART-A 1? on? riation? samplin ation.	CON d R o nce s (2 Ma	h app TR(chan ark (propria OL rts) – pling	te ex Con	-	2	BTL-2 BTL-2 BTL-2 BTL-2 BTL-2 BTL-2 BTL-2 BTL-2 BTL-2 BTL-2 BTL-2 BTL-2 BTL-2 BTL-2 BTL-2 BTL-2 BTL-2 BTL-2	tributes (p,c and Understanding Remembering Understanding Remembering Remembering Remembering Remembering Understanding Understanding Understanding Understanding Understanding	nd CO5 CO5 CO5 CO5 CO5 CO5 CO5 CO5 CO5 CO5
UNIT Contr np cha 1. 2. 3. 4. 5. 6 7. 8 9. 10 11. 12. 13. 14.	Explain the Ma -V: STATIS ol charts for I arts) – Tolera What is Statistic Write down adv What is meant b What is meant b Name the types Define product Define process What is control Write down use Write down typ Define OC Curr Write down typ Write the formu What is meant b What is meant b What is the formu	nn-Whitne FICAL neasure nce limi cal quality antage of by chance by Assignation of Control control control Chart? s of Mear es of Accord ve es of Cause la for np by AQL and nula for c nce Samp	QUAI ments ts – Ao PA contro SQC. variationable van of Chart of Chart chart. chart. chart. chart an ling.	LITY ((X an ccepta ART-A 1? on? riation? samplin ation. D nd p cha	CON d R o nce s (2 Ma (2 Ma ng pla	h app TR(chan ark (propria OL rts) – pling	te ex Con	-	2	BTL-2 BTL-2	tributes (p,c and Understanding Remembering Understanding Understanding Remembering Remembering Remembering Remembering Understanding Understanding Understanding Understanding Understanding	nd CO5 CO5 CO5 CO5 CO5 CO5 CO5 CO5 CO5 CO5
UNIT Contr np cha 1. 2. 3. 4. 5. 6 7. 8 9. 10 11. 12. 13. 14. 15.	Explain the Mar -V: STATIS ol charts for 1 arts) – Tolera What is Statistic Write down adv What is meant b What is meant b Name the types Define product Define product Define process What is control Write down use Write down typ Define OC Curr Write down typ Write down typ Write down typ Write the formu What is meant b What is the formu	nn-Whitne FICAL neasure nce limi cal quality antage of by chance by Assignation of Control control control Chart? s of Mear es of Accord ve es of Cause la for np by AQL and nula for c nce Samp	QUAI ments ts – Ao PA contro SQC. variationable van of Chart of Chart chart. chart. chart. chart an ling.	LITY ((X an ccepta ART-A 1? on? riation? samplin ation. D nd p cha	CON d R o nce s (2 Ma (2 Ma ng pla	h app TR(chan ark (propria OL rts) – pling	te ex Con	-	2	BTL-2 BTL-1 BTL-2 BTL-2 BTL-2 BTL-2 BTL-2 BTL-2 BTL-2 BTL-2 BTL-2 BTL-2 BTL-2 BTL-2 BTL-2 BTL-2 BTL-2 BTL-2 BTL-2 BTL-2 BTL-2	tributes (p,c and Understanding Remembering Understanding Understanding Remembering Remembering Remembering Understanding Understanding Understanding Understanding Understanding Understanding Understanding Remembering	nd CO5 CO5 CO5 CO5 CO5 CO5 CO5 CO5 CO5 CO5
UNIT Contr np cha 1. 2. 3. 4. 5. 6 7. 8 9. 10 11. 12. 13. 14. 15. 16.	Explain the Mar Explain the Mar ol charts for I arts) – Tolerar What is Statistic Write down adv What is meant b What is meant b What is meant b Name the types Define process What is control Write down use Write down use Write down typ Define OC Cur Write down typ Define OC Cur Write down typ Write the formu What is meant b What is the form Define Accepta Explain produce	nn-Whitne FICAL neasure nce limi cal quality antage of by chance by chance by Assigna of Control control Chart? s of Mear es of Acco ye es of Caus la for np by AQL an nula for c nce Samp ers Risk a ce limits.	QUAI ments ts – Ao PA contro SQC. variation able var of Chart chart chart. chart. chart at ling. nd Cons	LITY ((X an ccepta ART-A 1? on? riation? samplin ation. D nd p cha	CON d R o nce s (2 Ma (2 Ma ng pla	h app TR(chan ark (propria OL rts) – pling	te ex Con	-	2	BTL-2 BTL-2	tributes (p,c and Understanding Remembering Understanding Understanding Remembering Remembering Remembering Remembering Understanding Understanding Understanding Understanding Understanding Evaluating	nd CO5 CO5 CO5 CO5 CO5 CO5 CO5 CO5 CO5 CO5
UNIT Contr np cha 1. 2. 3. 4. 5. 6 7. 8 9. 10 11. 12. 13. 14. 15. 16. 17. 18. 19.	Explain the Mar -V: STATIS ol charts for I arts) – Tolera What is Statistic Write down adv What is meant b What is meant b Name the types Define product Define process What is control Write down use Write down use Write down typ Define OC Curr Write down typ Define OC Curr Write the formu What is meant b What is the formu What is the formu What is the formu What is the formu Define Accepta Explain produce Define Tolerand Define one-side	nn-Whitne FICAL neasure nce limi cal quality antage of by chance by chance control Chart? s of Mear es of Acco ve es of Caus hal for np by AQL and nula for c nce Samp ers Risk and ce limits. d Toleran	QUAI ments ts – Ao PA contro SQC. variatic able var of Chart of Chart chart. chart. chart a ling. nd Cons ce limit	LITY ((X an ccepta ART-A 1? on? riation? samplin ation. D nd p cha sumer F	CON d R o nce s (2 Ma (2 Ma ng pla	h app TR(chan ark (propria OL rts) – pling	te ex Con	-	2	BTL-2 BTL-2	tributes (p,c and Understanding Remembering Understanding Understanding Remembering Remembering Remembering Remembering Understanding Understanding Understanding Understanding Understanding Understanding Evaluating Remembering Remembering Remembering Remembering Remembering Remembering Remembering Remembering Remembering	nd CO5 CO5 CO5 CO5 CO5 CO5 CO5 CO5
UNIT Contr np cha 1. 2. 3. 4. 5. 6 7. 8 9. 10 11. 12. 13. 14. 15. 16. 17. 18.	Explain the Mar Explain the Mar ol charts for I arts) – Tolerar What is Statistic Write down adv What is meant b What is meant b What is meant b Name the types Define process What is control Write down use Write down use Write down typ Define OC Cur Write down typ Define OC Cur Write down typ Write the formu What is meant b What is the form Define Accepta Explain produce	nn-Whitne FICAL neasure nce limi cal quality cal quality cal quality cal quality cal quality control control Chart? s of Mear es of Acco y AQL at nula for np by AQL at nula for c nce Samp ers Risk a ce limits. d Toleran led Tolera	QUAI ments ts – Ao PA contro SQC. variation able var d Chart. d Chart. chart. chart. d LTP chart a ling. nd Const chart. chart a ling.	LITY ((X an ccepta ART-A 1? on? riation? samplin ation. D nd p cha sumer F ts. hits.	CON d R of nce s (2 Ma (2 Ma))))))))))))))))))))))))))))))))))))	n	propria OL rts) – pling Questio			2	BTL-2 BTL-2	tributes (p,c and Understanding Remembering Understanding Understanding Remembering Remembering Remembering Remembering Understanding Understanding Understanding Understanding Understanding Evaluating Remembering Creating	nd CO5 CO5 CO5 CO5 CO5 CO5 CO5 CO5 CO5 CO5

22.	How are contr	rol lin	nits fo	r an R	char	t dete	rmine	d?				BTL-2	Understanding	CO5
23.	What is an \overline{X} of								trol?			BTL-1	Understanding	CO5
24.	Why are \overline{X} cha						-					BTL-2	Understanding	C05
25.	What are the r						-		don	Dohor	+9	BTL-2	Understanding	CO5
	what are the						6 Mai				ι:	DIL-2	Understanding	05
	1								Cotion	15)			ſ	
1.	What do you		stand	by SC	QC. D	iscuss	its ut	ility				BTL -3	Applying	CO5
	and limitation			1		fam		<u>_</u> 1.1.			1			
	The following of four items													
	of 1 hour each													
	production pro	,				101 0	nui t ui	10 111	u out	ii tiic				
	Sample					ne par	ts in o	unces	3					
2.	1	1			12		10		1	2		BTL -4	Analyzing	CO5
	2	1	0		12		13		1	3				
	3	1	0		10		9		1	1				
	4	1			10		9		1					
	5		2		12		12		1					
	You are given													
	samples of siz			raw n	nean c	chart a	and co	omme	nt on	the sta	ate of			
2	control of the Sample No	proce	$\frac{2}{2}$	3	4	5	6	7	8	9	10			005
3.	(\overline{X})	43	49	37	4	45	6 37	51	46	43	47	BTL -3	Applying	CO5
	R	+3	+)	57		43			40	43	+/			
		5	6	5	7	7	4	8	6	4	6			
	A machine is	set to	delive	er pac	kets o	of a gi	ven w	eight	10 s	ample	sof			
	size 5 each we										5 01			
	Sample No	1	2	3	4	5	6	7	8	9	10			
4.(a)	$(\overline{\mathbf{X}})$	15	17	15	18	17	14	18	15	-	16	BTL -3	Applying	CO5
4.(a)	R	7	7	4	9	8	7	12	4	11	5	DIL-J	Apprying	05
	Calculate the													
	mean chart an		-											
	control.(Conv	ersior	1 facto	ors for	n =	5 are	$A_2 =$	= 0.58	S D ₃	= 0, D	₄ =			
	2.115)	ail th		hort o		<u>ิ</u> า								
4.(b)	Explain in det											BTL -3	Applying	CO5
	The following													
	drawn random	•	-		-									
5.	the number of	detec	ets and	l com	ment	on the	e state	of co	ontrol	The	Units	BTL -4	Analyzing	CO5
	are 6, 4, 9, 10, 11	12 0	0 10	0 10) 15	10.20) 15	10						
	0, 4, 9, 10, 11	, 12, 2	20, 10	, 9, 10), 13,	10, 20), 15,	10.						
	The following	r data	show	the v	alues	of sar	nple n	nean	X and	the ra	nge R			
	for the sample													
	control limits													
$\mathcal{L}(z)$	the process is					C							A	COF
	Sample No	1	2	3	4	5	6	7	8	9	10	BTL -3	Applying	CO5
6.(a)	Sample NO	1		5		5	0	,	-	-	10	4 1		
0.(a)	(X)	11.2	11.8	10.8		11	9.6	10.4			10			
0.(a)		7	11.8 4	10.8 8	11.6 5	11 7	9.6 4	10.4 8	9.6 4	10.6 7	10 9			

6.(b)	Explain in detail	the $\overline{\mathbf{X}}$ Cha	rt clearly	y?					BTL -3	Applying	CO5
7.	15 tape-recorders of defects in each appropriate contro Unit No (i) No of defects (c)	tape-reco ol chart a 1 2	order is r	recorded tent on t 6 7	below he stat	. Draw e of co	the	·1	BTL -4	Analyzing	CO5
8.	The following da electric bulbs each process. Draw the Sample No 1 2 3 4 5 6 7 8 9 10 (Given	h drawn a control d	t an inte chart for 687 585 701 626 984 755 710 723 791 524	rval of c X and R Life ti 66 52 68 57 65 62 66 62 66 61 53 62	one hou comm me (in 6 4 2 9 5 4 4 3 6	ur from eent. hours 689 585 567 628 643 582 693 535 612 503	738 653 619 631 660 683 770 550 497 661		BTL -3	Applying	CO5
9.	From the informa chart Sample No.(each No. of defectives State your conclu above chart inclue	of 100) sions. Wi	1 2 12 7 ite all th	2 3 7 9 e steps i	4 5 8 10 n the c	6) 6	7 8 7 11	9 8	BTL -4	Analyzing	CO5
10.	The following tab100 items each, cSampleNumber12345678910Construct a p- cha	le gives t oncerning Size San 10 10 10 10 10 10 10 10 10 10 10 10	he inspe	ction da duction Num Defe	ta relat	le cork	-	n	BTL -4	Analyzing	CO5
11.	Construct X char Sample No Observation	$\begin{array}{c c} t \text{ for follo} \\ \hline 1 & 2 \\ \hline 32 & 2 \\ \hline 36 & 3 \\ \end{array}$	owing da 2 3 8 39 2 52 0 28	tta 4 50 42 31	5 42 45 34	6 50 29 21	7 44 52 35	8 22 35 44	BTL -4	Analyzing	CO5

	Also determ	nine w	hether	the p	rocess	is in o	contro	1.						
	The followi \overline{X} chart and							nples	of read	lings.	Draw			
	Samples	1	2	3	4	5	6	7	8	9	10			
	X	34	31.6	30.8	33	35	33.2	33	32.6	33.8	37.8			
12.	R	4	4	2	3	5	2	5	13	19	6	BTL -3	Applying	CO5
	Samples	11	12	13	14	15	16	17	18	19	20			
	X	35.8	38.4	34	35	38.8	31.6	33	28.2	31.8	35.6			
	R	4	4	14	4	7	5	5	3	9	6			
	(Given for	n = 5	5 are A	$A_2 = 0$).58 I	$D_3 = 0$), D ₄ =	= 2.12	2)					
13.	An inspection following n			1							d the	BTL -4	Analyzing	CO5
14.	Explain Co	ntrol L	Limits	for the	e samp	ple me	an X a	and sa	mple r	ange l	R.	BTL -3	Applying	CO5
	Construct R		for fo	llowir			101	NEE	4		7			
	Sample No).				Observ		_	14	2	-			
	1 2		<u>1.7</u> 0.8		2.2		1.9 2.1	_		.2	-			
	$\frac{2}{3}$		<u> </u>		1.3	-		210.1	1.					
	4		0.4		0.6		0.7		0.					
15.	5		1.4		2.3	17	2.8		2.			BTL -4	Analyzing	CO5
	6		1.8		2	1	1.1	0	0.	.1				
	7		1.6		1.		1.5		2	2				
	8		2.5		1.6	1	1.8		1.		_			
	<u>9</u>	r Ctat	$\frac{2.9}{2.9}$	0.04.001	2		0.5	/	2.	.2				
	Comment o Construct a				fracti	on def	ective	s (n-([¬] hart)	for				
	following d			111 101	macti	on dei	cenve	3(P,	liart)	101				
16.	Sample No.		1	2	3	4	5 6	7	8	9 1	0	BTL -4	Analyzing	CO5
	Sample Siz	e	9	0 65	85	70 8	80 80	0 70	95	90 7	75			
	No of defec	tives	9) 7	3	2	9 5	3	9	6	7			
	The followi	-	-							-	each			
	of size 100.			-		hese c	lata an	nd also	o deter	mine				
	whether the Sample No		SS 18 11	n cont	rol									
17.	Sample No).	2	3	4	5	6	7	8	9	10	BTL -4	Analyzing	CO5
	No. of defectives	24	4 38	62	34	26	36	38	52	33	44			
	A machine													
	randomly.													
18.	Draw the co determine v									nge an	d	BTL -3	Applying	CO5
10.				loces	5 15 111							DIL- 3	тррушу	
	Sample 1 No.	2	3 4	5	6	7 8	9	10 1	1 12	13	14 15			
												1		

	10	10.3	3 11.5	11	11.3	10.7	11.3	12.3	11	11.3	12.5	11.9	12.1	11.9	10.6
Weight		2 10.9	9 10.7	11.1	11.6	11.4	11.4	12.1	13.1	12.1	11.9	12.1	11.1	12.1	11.9
Boxes (X)		3 10.7	11.4	10.7	11.9	10.7	11.1	12.7	13.1	10.7	11.8	11.6	12.1	13.1	11.7
	12.4	4 11.7	12.4	11.4	12.1	11	10.3	10.7	12.4	11.5	11.3	11.4	11.7	12	12.1
