

SRM VALLIAMMAI ENGEINEERING COLLEGE

SRM Nagar, Kattankulathur – 603 203.

(An Autonomous Institution)

DEPARTMENT OF COMPUTER APPLICATIONS

QUESTION BANK

I SEMESTER

MA4121 – APPLIED PROBABILITY AND STATISTICS Regulation – 2024 Academic Year 2024- 2025 Prepared by

Dr. V. Vijayalakshmi, Associate Professor/Mathematics Dr. B. Vasuki Assistant Professor / Mathematics

SRM VALLIAMMAI ENGEINEERING COLLEGE

DEPARTMENT OF MATHEMATICS

QUESTION BANK

SUBJECT : MA4121 – APPLIED PROBABILITY AND STATISTICS SEM / YEAR : I / I year MCA

UNIT I -LINEAR ALGEBRA - Vector spaces – Norms – Inner Products - QR factorization - Generalized Eigen vectors - Singular value decomposition and applications – Pseudo inverse - Least squares method.

	No. Question BI		Commentance	Course Outcome
Q.No.	Question	my	Competence	
	DADT A	Level		
1	Define Real Symmetric Matrix	BTI -1	Remembering	CO 1
2	Define Vector Space	BTL -2	Understanding	CO 1
3	Define Subspace of a vector space	BTL -2	Understanding	CO 1
<u> </u>	Define direct sum of two subspaces	BTL -1	Remembering	CO 1
5	In a Vector Space V (F) if $\alpha v = 0$ then either $\alpha = 0$ or $v = 0$ prove.	BTL -2	Understanding	CO 1
6	Is $\{(1,4,-6), (1,5,8), (2,1,1), (0,1,0)\}$ is a linearly independent subset of R^3 ? Justify your answer	BTL -1	Remembering	CO 1
7.	Find the sum and product of all Eigen values of $\begin{bmatrix} 1 & 2 & -2 \\ 1 & 0 & 3 \\ -2 & -1 & -3 \end{bmatrix}$	BTL -2	Understanding	CO 1
8 .	Define Least square method.	BTL -1	Remembering	CO 1
.9	Find the least square solution to the system $x_1 + x_2 =$ 3, $-2x_1 + 3x_2 = 1$ and $2x_1 - x_2 = 2$	BTL -2	Understanding	CO 1
10	Define Hermitian Matrix.	BTL -1	Remembering	CO 1
11	Write short note on Singular value decomposition of complex matrix A.	BTL -1	Remembering	CO 1
12	State Singular value decomposition theorem.	BTL -1	Remembering	CO 1
13	If A is a nonsingular matrix, then what is A^+ ?	BTL -2	Understanding	CO 1
14.	If the sum of two eigenvalues and trace of a $3x3$ matrix A are equal find the value of $ A $.	BTL -1	Remembering	CO 1
15.	Let $A = \begin{pmatrix} 1 & 1 \\ 1 & 3 \end{pmatrix} = A_1$. Compute A ₂ using QR algorithm.	BTL -2	Understanding	CO 1
16.	Discuss the nature of the quadratic form $6x^2 + 3y^2 + 3z^2 - 4xy - 2yz + 4zx.$	BTL -2	Understanding	CO 1
17.	If the eigen values of the matrix A of order 3X3 are 2,3 and 1, then find the determinant of A	BTL -2	Understanding	CO 1
18.	Find the sum and product of the Eigen values of the matrix $\begin{bmatrix} 2 & 2 & 0 \\ 2 & 2 & 1 \\ -7 & 2 & -3 \end{bmatrix}$.	BTL -1	Remembering	CO 1

19.	Check whether the given matrix is positive definite or not $ \begin{pmatrix} 3 & 1 & -1 \\ 1 & 3 & -1 \\ -1 & -1 & 5 \end{pmatrix} $	BTL -1	Remembering	CO 1
20.	Give the nature of quadratic form without reducing into canonical form $x_1^2 - 2 x_1 x_2 + x_2^2 + x_3^2$	BTL -1	Remembering	CO 1
21.	Find the characteristic equation of $A = \begin{pmatrix} 1 & -2 \\ -5 & 4 \end{pmatrix}$	BTL -2	Understanding	CO 1
22.	Find the characteristic equation of $A = \begin{bmatrix} 3 & 5 \\ -2 & -4 \end{bmatrix}$.	BTL -1	Remembering	CO 1
23.	Give the nature of the quadratic form without converting whose matrix is $\begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -2 \end{pmatrix}$.	BTL -2	Understanding	CO 1
24.	Find the generalized inverse of $\begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}$	BTL -1	Remembering	CO 1
25.	Write down the matrix of the quadratic form $2x^2 + 8z^2 + 4xy + 10xz - 2yz$	BTL -2	Understanding	CO 1
	PART – B	× ~		
1.	Determine whether the following set is linearly dependent or linearly independent $\begin{pmatrix} 1 & 0 \\ -2 & 1 \\ 2 & -2 \end{pmatrix}$ generate $M_{2\times 2}(R)$	BTL -3	Applying	CO 1
2.	If x, y and z are vectors in a vector space V such that $x + z = y + z$, then prove that $x = y$ i) The additive identity for any $x \in V$ is unique ii) The additive inverse is unique	BTL -2	Understanding	CO 1
3.	Show that the set $,S=\{(1,3,-4,2),(2,2,-4,0),(1,-3,2,-4),(-1,0,1,0)\}$ is linearly dependent of the other vectors	BTL -3	Applying	CO 1
4. (a)	Determine whether the following subset of vector space $R^{3}(R)$ is a subspace $W_{1}=\{((a_{1}, a_{2}, a_{3}): 2a_{1}-7a_{2}+a_{3}=0\}$	BTL -3	Applying	CO 1
4.(b)	Illustrate that set of all diagonal matrices of order $n \times n$ is a subspace of the vector space $M_{n \times n}(F)$, where $M_{n \times n}$ is the set of all square matrices over the field F	BTL -3	Applying	CO 1
4.(b) 5.	Illustrate that set of all diagonal matrices of order $n \times n$ is a subspace of the vector space $M_{n \times n}(F)$, where $M_{n \times n}$ is the set of all square matrices over the field <i>F</i> Find the QR factorization of $A = \begin{pmatrix} 3 & 2 \\ 4 & 5 \end{pmatrix}$	BTL -3 BTL -2	Applying Understanding	CO 1 CO 1
4.(b) 5. 6.	Illustrate that set of all diagonal matrices of order $n \times n$ is a subspace of the vector space $M_{n \times n}(F)$, where $M_{n \times n}$ is the set of all square matrices over the field F Find the QR factorization of $A = \begin{pmatrix} 3 & 2 \\ 4 & 5 \end{pmatrix}$ Find the QR factorization of $A = \begin{bmatrix} 0 & 0 & 5 \\ 0 & 4 & 1 \\ 1 & 1 & 1 \end{bmatrix}$	BTL -3 BTL -2 BTL -2	Applying Understanding Understanding	CO 1 CO 1 CO 1
4.(b) 5. 6. 7.	Illustrate that set of all diagonal matrices of order $n \times n$ is a subspace of the vector space $M_{n \times n}(F)$, where $M_{n \times n}$ is the set of all square matrices over the field F Find the QR factorization of $A = \begin{bmatrix} 3 & 2 \\ 4 & 5 \end{bmatrix}$ Find the QR factorization of $A = \begin{bmatrix} 0 & 0 & 5 \\ 0 & 4 & 1 \\ 1 & 1 & 1 \end{bmatrix}$ Find the QR factorization of $A = \begin{bmatrix} 1 & 1 & -1 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix}$	BTL -3 BTL -2 BTL -2 BTL -4	Applying Understanding Understanding Analyzing	CO 1 CO 1 CO 1 CO 1
4.(b) 5. 6. 7. 8.	Illustrate that set of all diagonal matrices of order $n \times n$ is a subspace of the vector space $M_{n \times n}(F)$, where $M_{n \times n}$ is the set of all square matrices over the field F Find the QR factorization of $A = \begin{bmatrix} 3 & 2 \\ 4 & 5 \end{bmatrix}$ Find the QR factorization of $A = \begin{bmatrix} 0 & 0 & 5 \\ 0 & 4 & 1 \\ 1 & 1 & 1 \end{bmatrix}$ Find the QR factorization of $A = \begin{bmatrix} 1 & 1 & -1 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix}$ Obtain the singular value decomposition of $\begin{pmatrix} 2 & 2 \\ -1 & 1 \end{pmatrix}$	BTL -3 BTL -2 BTL -2 BTL -4 BTL -2	Applying Understanding Understanding Analyzing Understanding	CO 1 CO 1 CO 1 CO 1 CO 1

10.	Obtain the singular value decomposition of A $\begin{bmatrix} 2 & -1 \\ -2 & 1 \\ 4 & -2 \end{bmatrix}$	BTL -3	Applying	CO 1
11.	Obtain the singular value decomposition $\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$	BTL -3	Applying	CO 1
12.	Find the least square line fitted to the data $(1,1),(2,2),(3,2),(4,3).$	BTL -3	Applying	CO 1
13.	Solve the following system of equations in the least square sense $x_1 + x_2 + x_3 = 1$; $x_1 + x_2 + x_3 = 2$; $x_1 + x_2 + x_3 = 3$.	BTL -4	Analyzing	CO 1
14.	Solve the following system of equations in the least square sense $2x_1 + 2x_2 - 2x_3 = 1$, $2x_1 + 2x_2 - 2x_3 = 3$, $-2x_1 - 2x_2 + 6x_3 = 2$	BTL -3	Applying	CO 1
15.	Fit a straight line in the least square sense to the following dataX: -3 -2 -1 0 1 2 3 Y:81217252632 40	BTL -4	Analyzing	CO 1
16.	Fit a straight line in the least square sense to the following dataX: -3 -2 -1 0 1 2 3 Y: 10 15 19 27 28 34 42	BTL -4	Analyzing	CO 1
17.	Find the eigen values and eigen vectors of the matrix $A = \begin{pmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{pmatrix}$	BTL -3	Applying	CO 1
18.	Find the Eigen values and Eigen vectors of the matrix $ \begin{pmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{pmatrix} $	BTL -4	Analyzing	CO 1
UNIT Conditi generat Norma	– II PROBABILITY AND RANDOM VARIABLES: onal probability–Baye's theorem-Random variables-Pro ing functions and their properties–Binomial, Poisson, Geometr distributions–Function of a random variable.	Probabili bability ric, Unifor	ty–Axioms of pr function–Moment m, Exponential, G	robability– s–Moment amma and
Q.No.	Question	Bloom's Taxono my Level	Competence	Course Outcome
	PART – A			
1.	What is the use of Baye's theorem?	BTL-2	Understanding	CO 2
2.	Mention the properties of a discrete probability distribution.	BTL-2	Understanding	CO 2
3.	Check whether the function given by $f(x) = \frac{x+2}{25}$ for x=1,2,3,4,5 can serve as the probability distribution of a discrete random variable.	BTL-2	Understanding	CO 2
4.	If the random variable X takes the values 1,2,3 and 4 such that 2P(X = 1) = 3P(X = 2) = P(X = 3) = 5P(X = 4), find the probability distribution of X	BTL-1	Remembering	CO 2

5.	The RV X has the following probability distribution: x -2-101 $P(x)$ 0.4k0.20.3Find k and the mean value of X	BTL-2	Understanding	CO 2
6.	If $f(x) = K(x + x^2)$ in $1 < x < 5$ is a pdf of a continuous random variables. Find the value of K.	BTL-1	Remembering	CO 2
7.	The p.d.f of a continuous random variable X is f(x) = k(1 + x), 2 < x < 5 Find k.	BTL-1	Remembering	CO 2
8.	For a continuous distribution $f(x) = k(x - x^2), 0 \le x \le 1$, where k is a constant. Find k.	BTL-2	Understanding	CO 2
9.	If $f(x) = kx^2$, $0 < x < 3$, is to be a density function, find the value of <i>k</i> .	BTL-2	Understanding	CO 2
10.	If the probability that a target is destroyed on any one shot is 0.5, Find the probability that it would be destroyed an 6^{th} attempt.	BTL-2	Understanding	CO 2
11.	The mean of Binomial distribution is 20 and standard deviation is 4. Find the parameters of the distribution.	BTL-2	Understanding	CO 2
12.	The mean and variance of binomial distribution are 5 and 4. Determine the distribution.	BTL-1	Remembering	CO 2
13.	If 3% of the electric bulbs manufactured by a company are defective, Find the probability that in a sample of 100 bulbs exactly 5 bulbs are defective.	BTL-2	Understanding	CO 2
14.	Messages arrive at a switchboard in a poisson manner at an average rate of six per hour. Find the probability for exactly two messages arrive within one hour.	BTL-1	Remembering	CO 2
15.	The number of monthly breakdowns of a computer is a random variable having Poisson distribution with mean 1.8. Find the probability that this computer will function for a month with only one breakdown.	BTL-2	Understanding	CO 2
16.	If X is a Poisson variate such that $2P(X = 0) + P(X = 2) = 2P(X = 1)$, find E(X)	BTL-1	Remembering	CO 2
17.	The probability that a candidate can pass in an examination is 0.6. What is the probability that he will pass in third trial?	BTL-2	Understanding	CO 2
18.	If $f(x) = \frac{x^2}{3}$, $-1 < x < 2$ is the pdf of the random variable X, then find p(0 <x<1)< th=""><th>BTL-1</th><th>Remembering</th><th>CO 2</th></x<1)<>	BTL-1	Remembering	CO 2
19.	If the probability that an applicant for a driver's license will pass the road test on any given trial is 0.8, what is the probability that he will finally pass the test on the fourth trial	BTL-2	Understanding	CO 2
20 .	If X has uniform distribution in (-3,3), find $P(x - 2 < 2)$	BTL-1	Remembering	CO 2
21.	Let X be a random variable with moment generating function $M_X(t) = \frac{(2e^t + 1)^4}{81}$. Find its mean and variance.	BTL-2	Understanding	CO 2

22.	A Random variable X is uniformly distributed between 3 and 15. Find the variance of X.	BTL-1	Remembering	CO 2		
23.	A continuous RV X has the density function $ce^{-\frac{x}{5}}$, $x > 0$. Find c. Create E(x) and Var(X)	BTL-2	Understanding	CO 2		
24.	If X is a normal random variable with mean 3 and variance 9, find the probability that X lies between 2 and 5.	BTL-1	Remembering	CO 2		
25.	A normal distribution has mean $\mu = 20$ and standard deviation $\sigma = 10$. Evaluate ($15 \le X \le 40$).	BTL-1	Evaluating	CO 2		
	PART –B					
1(a)	A random variable X has the following probability distribution: $\begin{array}{c c c c c c c c c c c c c c c c c c c $	BTL-2	Understanding	CO 2		
1(b)	Find the MGF of Binomial distribution and hence find its mean and variance	BTL-2	Remembering	CO 2		
2(a)	The probability mass function of a discrete R. V X is given in the following table:X-2-10123P(X=x)0.1K0.22k0.3kFind (1) Find the value of k, (2) P(X<1),(3) P(-1< X ≤ 2)	BTL-2	BTL-2 Understanding			
2(b)	Obtain the MGF of Poisson distribution and hence find its mean and variance	BTL-2	Remembering	CO 2		
3(a)	The probability mass function of a discrete random variable X is given in the following table $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	BTL-4	Analyzing	CO 2		
3(b)	Deduce the MGF of a geometric distribution and hence find the mean and variance	BTL-4	Analyzing	CO 2		
4(a)	If the discrete random variable X has the probability function given by the table. x 1 2 3 4 $P(x)$ $k/3$ $k/6$ $k/3$ $k/6$ Find the value of k and Cumulative distribution of X.	BTL-3	Applying	CO 2		
4(b)	Derive the MGF of Uniform distribution and hence deduce the mean and variance	BTL-3	Applying	CO 2		
5(a)	If the probability mass function of a random variable X is given by $P(X=x) = kx^3$, $x=1,2,3,4$. Find the value of k, mean and variance of X.	BTL-4	Analyzing	CO 2		
5(b)	Deduce the MGF of Exponential distribution and hence find its mean and variance	BTL-4	Analyzing			
6(a)	Find the MGF , mean and variance of the random variable X has the pdf	BTL-4	Analyzing			

	(x, 0 < x < 1)			CO 2
	$f(x) = \begin{cases} 2 - x \cdot 1 < x < 2 \end{cases}$			
	0 otherwise			
	State and prove the memory less property of exponential			CO^2
6(b)	distribution	BTL-4	Analyzing	02
	In a large consignment of electric bulbs, 10 percent are			
7(a)	defective. A random sample of 20 is taken for inspection.	BTI 3	Applying	CO 2
	Find the probability that i) all are good bulbs ii) atmost there	DIL-J	Арргушд	
	are 3 defective bulbs iii) exactly there are 3 defective bulbs.			
	A manufacturer of pins knows that 2% of his products are			CO^{2}
7(b)	defective. If he sells pins in boxes of 100 and guarantees	BTL-3	Applying	02
	probability that a box fail to meet the guaranteed quality			
8.	In a bolt factory machines A, B, C manufacture			CO 2
	respectively 25%, 35% and 40% of the total of their output			
	5, 4, 2 percent are defective bolts. If A bolt is drawn at	BTI -4	Analyzing	
	random from the product and is found to be defective, what	DIL-4	Anaryzing	
	are the probabilities that is was manufactured by machines	50		
0 (a)	A, B and C? $(1 + y) + z$	~		CO^2
9(a)	If a random variable X has p.d.f $f(x) = \begin{cases} -\frac{1}{4}, & X < 2 \\ -\frac{1}{4}, & X < 2 \end{cases}$		A	
	(0, Otherwise	BIL-4	Analyzing	
0 (b)	Find (a) $P(X < 1)$ (b) $P(X > 1)$ (c) $P(2X + 3 > 5)$.			
9(D)	family would you expect to have i) at least 1 hoy ii) 2 hoys	BTL-4	Analyzing	
10.(a)	Find the MGF of the random variable X having the			CO 2
100(0)	$\begin{pmatrix} x & -\frac{x}{2} \\ x & x > 0 \end{pmatrix}$			001
	probability density function $f(x) = \begin{cases} \frac{1}{4}e^{-2x}, & x > 0 \end{cases}$. Also	BTL-4	Analyzing	
	find the mean and variance			
10(b)	4 coins were tossed simultaneously. What is the probability			CO 2
20(0)	of getting	BTL-4	Analyzing	002
	(i) 2 heads, (ii) at least 2 heads, (iii) at most 2 heads.		5 0	
11.(a)	A random variable X has c.d.f			CO 2
	(0, if x < -1)			
	$F(x) = \begin{cases} a(1+x), if -1 < x < 1 \end{cases}$	BTL-3	Applying	
	$(1, if x \ge 1)$			
11(1)	Find the value of a. Also $P(X>1/4)$ and $P(-0.5 \le X \le 0)$.			
11(b)	The atoms of a radioactive element are randomly disintegrating. If every gram of this element on every			
	emits 3.9 alpha particles per second then what is the			CO^2
	probability that during the next second the number of alpha	BTL-3	-3 Applying	
	particles emitted from 1 gram is (1) at most 6 (2) at least 2			
	and (3) at least and at most5			

12.	$ax, 0 \le x \le 1$			
	<i>a</i> . $1 \le x \le 2$			
	If $f(x) = \begin{cases} 3a - ax & 2 \le x \le 3 \end{cases}$ is the p.d.f of X. Calculate			
	$\int u u x, 2 = x = 5$			
	(i) The value of a	BTL-4	Analyzing	CO_2
	(1) The value of a, (ii) The sumulative distribution function of X			002
	(ii) If X_1 X_2 and X_2 are 3 independent observations of			
	X. Find the probability that exactly one of these 3 is			
	greater than 1.5?			
13.(a)	The Probability distribution function of a R.V. X is given			
	$4x(9-x^2)$	BTL-3	Applying	CO 2
	by $f(x) = \frac{m(y-x)}{81}$, $0 \le x \le 3$. Find the mean, variance.	2120		
13.(b)	The number of monthly breakdowns of a computer is a			
	random variable having a Poisson distribution with mean			
	equal to 1.8. Find the probability that this computer will	BTL-3	Applying	CO 2
	function for a month (1) without breakdown (2) with only	6		
	one breakdown and (3) with at least one breakdown.	0		
14.(a)	Messages arrive at a switch board in a Poisson manner at an	0		
	average rate of 6 per hour. Find the probability that exactly		A 1 ·	
	2 messages arrive within one hour, no messages arrives	BTL-4	Analyzing	CO 2
	hour		5. C	
14(b)	An electrical firm manufactures light hulbs that have a life			
- (~)	before burn out, that is normally distributed with mean equal			CO 2
	to 800 hours and a standard deviation of 40 hours. Find the	BTL-4	Analyzing	
	probability that a bulb burns between 778 and 834 hours.			
15.(a)	The time (in hours) required to repair a machine is			
	exponentially distributed with parameter $\lambda = 1/2$.			
	(a) What is the probability that the repair time exceeds			
	2 hours?	BTL-3	Applying	CO 2
	(b) what is the conditional probability that a repair time			
	9 hours?			
15(b)	Let X be a Uniformly distributed R. V. over [-5, 5] Evaluate			
()	(i) $P(X \le 2)$ (ii) $P(X >2)$ (iii) Cumulative distribution	BTL-3	Applying	CO 2
	function of X (iv) Var(X)	_	11,7,8	
16.(a)	Buses arrive at a specified stop at 15 minutes interval			
	starting at 7am that is, 7,7:15,7:30,7:45, and so on, If a			
	passenger arrives at the stop at a random time that is			~ ~ ~
	uniformly distributed between 7 and 7:30 am, evaluate the	BTL-4	Analyzing	CO 2
	(a) Loss than 5 minutes for a bus and			
	(a) Less than 5 minutes for a bus and (b) At least 12 minutes for a bus			
16(h)	The marks obtained by a number of students for a certain			
10(0)	subject is assumed to be normally distributed with mean 65	BTL-4	Analyzing	CO 2
	and standard deviation 5. If 3 students are taken at random		,B	

	from this set Find the probability that exactly 2 of them will have marks over 70°			
17.	In a test on 2000 electric bulbs, it was found that the life of a particular make, was normally distributed with an average life of 2040 hours and Standard Deviation of 60 hours. Find the number of bulbs likely to burn for (i) more than 2150 hours (ii) less than 1950 hours and (iii) more than 1920 hours burs less than 2160 hours.	BTL-3	Applying	CO 2
18.	The length of time a person speaks over phone follows exponential distribution with mean 6 mins. What is the probability that the person will talk for (1) more than 8 mins (2) between 4 and 8 mins.	BTL-4	Analyzing	CO 2
UNIT distribu	 – III TWO DIMENSIONAL RANDOM VARIABLES Joint dist tions – Function of two dimensional random variables – Regree 	ributions - ession Cur	 Marginal and one of the second second	conditional
Q.No.	Question	Bloom's Taxono my	Competence	Course Outcome
	PART – A	Level		
1.	The joint probability distribution of X and Y is given by $p(x, y) = \frac{x + y}{21}$, x = 1,2,3; y = 1, 2. Find the marginal probability distributions of X	BTL-2	Understanding	CO 3
2.	The joint probability function (X,Y) is given by $P(x, y) = k(2x + 3y)$, x = 0,1,2 $y = 1,2,3$, Find the value of K.	BTL-2	Understanding	CO 3
3.	Find the probability distribution of $X + Y$ from the bivariate distribution of (X, Y) given below: $X + Y$ 1210.40.220.30.1	BTL-2	Understanding	CO 3
4.	If the joint pdf of X and Y is given by $f(x,y)=2$,in $0 \le x \le y \le 1$, Find $E(X)$	BTL-1	Remembering	CO 3
5.	Find the marginal distributions of X and Y from the bivariate distribution of (X,Y) given below: $X Y 1 2$ $1 0.1 0.2$ $2 0.3 0.4$	BTL-2	Understanding	CO 3
6.	Find the value of k, if the joint density function of (X,Y) as $f(x, y) = \begin{cases} k(1-x)(1-y), 0 < x < 4, 1 < y < 5\\ 0, otherwise \end{cases}$	BTL-1	Remembering	CO 3

7.	If the joint probability density function of a random variable X and Y is given by $f(x, y) = \begin{cases} \frac{x^3y^3}{16} & 0 < x < 2, 0 < y < 2\\ 0, & otherwise \end{cases}$ Obtain the marginal density function of X.	BTL-1	Remembering	CO 3
8.	The joint pdf of the random variable (X,Y) is given by $f(x, y) = Kxye^{-(x^2+y^2)}, x > 0, y > 0$ Find the value of K.	BTL-1	Remembering	CO 3
9.	The joint probability density function of a random variable (X, Y) is $f(x, y) = k e^{-(2x+3y)}, x \ge 0, y \ge 0$. Point out the value of <i>k</i> .	BTL-2	Understanding	CO 3
10.	If the joint pdf of (X, Y) is $f(x, y) = \begin{cases} \frac{1}{4}, 0 < x, y < 2\\ 0, otherwise \end{cases}$ Find $P(X + Y \le 1)$	BTL-1	Remembering	CO 3
11.	Let X and Y be random variables with joint density function $f(x,y) = \begin{cases} 4xy, & 0 < x < 1, & 0 < y < 1 \\ 0, & otherwise \end{cases}$ formulate the value of E(XY)	BTL-2	Understanding	CO 3
12.	Let the joint density function of a random variable X and Y be given by $f(x, y) = 8xy$, $0 < y \le x \le 1$.Calculate the marginal probability function of X	BTL-1	Remembering	CO 3
13.	What is the condition for two random variables are independent?	BTL-2	Understanding	CO 3
14.	If the joint probability density function of X and Y is $f(x, y) = e^{-(x+y)}, x, y \ge 0$. Are X and Y independent	BTL-1	Remembering	CO 3
15.	State any tow properties of correlation coefficient	BTL-2	Understanding	CO 3
16 .	Write the angle between the regression lines	BTL-1	Remembering	CO 3
17.	The regression equations are $x + 6y = 14$ and $2x + 3y = 1$. Evaluate the correlation coefficient between X & Y.	BTL-1	Remembering	CO 3
18.	If $\overline{X} = 970$, $\overline{Y} = 18$, $\sigma_x = 38$, $\sigma_y = 2$ and $r = 0.6$, Find the line of regression of X on Y.	BTL-2	Understanding	CO 3
19.	In a partially destroyed laboratory, record of an analysis of correlation data, the following results only are legible; Variance of $X = 9$; Regression equations are $8X - 10Y + 66 = 0$ and $40X-18Y = 214$. Find the mean values of X and Y?	BTL-1	Remembering	CO 3
20.	The regression equations are $3x + 2y = 26$ and $6x + y = 31$. Find the correlation coefficient.	BTL-2	Understanding	CO 3
21.	State the relationship between correlation coefficient and Regression coefficient.	BTL-1	Remembering	CO 3
22.	Prove that $-1 \le r_{xy} \le 1$	BTL-2	Understanding	CO 3
23.	The equations of two regression lines are $3x+2y=19$ and $3y+9x=46$. Obtain the mean of X and Y.	BTL-1	Remembering	CO 3
24.	The equations of two regression lines are $3x+2y=19$ and $3y+9x=46$. Derive the correlation coefficient between X and Y.	BTL-1	Remembering	CO 3
25.	State the equations of two regression lines.	BTL-2	Understanding	CO 3
	PART _R			

	From the	e followi	ng table :	for bivar	iate distr	ibution o	of (X,			
	Y). Find (i) $P(X)$	< 1)		(ii) P(Y)	(< 3)		(iii)			
	$P(X \leq 1)$	$1, Y \leq 3$	(iv)P(X)	$\leq 1/Y$	<u> </u>	(v) P(v)	(m) ∕ ≤			
	$3/X \leq$	1) (v	i)P(X +	$Y \leq 4$	-					
	XY	1	2	3	4	5	6			
1 (-)								DTI 2	I In denote a din e	CO^{2}
1.(a)	0	0	0	$\frac{1}{32}$	$\frac{2}{32}$	$\frac{2}{32}$	$\frac{3}{32}$	BIL-2	Understanding	03
	1	$\frac{1}{16}$	$\frac{1}{16}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$			
		16	10	8	8	8	ð			
	2	$\frac{1}{32}$	$\frac{1}{32}$	$\frac{1}{64}$	$\frac{1}{64}$	0	$\frac{2}{64}$	-		
	The two	dimensi	onal ran	dom vari	able (X.	Y) has	the joint	-		
	probabil	ity mass	functio	f(x, y)	$x) = \frac{x+2y}{x+2y}$	$\frac{y}{x} = 0$	1,2; y =	5		
2 (a)	0,1,2. Fi	nd the m	arginal d	istributio	ons of X	and Y. A	Also find	BTL-3	Applying	
2.(d)	the conditional distribution of Y given							DIL-5	rippiying	CO 3
	X = 1 al	so find t	he condit	tional dis	stribution	1 of X gi	ven Y =	1	n.,	
	The join	t pdf a bi	variate F	R.V <mark>(X, Y</mark>) is give	n by			2 A	
2 (b)		f(x, y):	$=\begin{cases} Kxy \\ 0 \end{cases}$, 0 < x	x < 1, 0	< y < 1		DTI 2	Applying	CO^{2}
2.(0)	(1) Find K. (2) Find $P(X+Y<1)$. (3) Are X and Y							DIL-3	Apprying	05
	i	ndepende	ent R.V's	S.	, , ,	100				
	If the jo	int pdf o	f (X, Y)	is given	by $P(\mathbf{x},$	y) = K	(2x+3y),			
3. (a)	x=0, 1, 2, 3, y=1, 2, 3 Find all the marginal probability distribution. Also							BTL-3	Applying	CO 3
	find the	probabili	ty distrib	oution of	X+Y.					
	The join	nt pdf o $(2 + \alpha^2)$	f the R	V (X,Y)	is give	en by f	(x,y) =			
3.(b)	$kxye^{-(x)}$	$(x - y^2)$	d the ve	luo of k	Also pr	ovo that	V and V	BTL-4	Analyzing	CO 3
	$x \ge 0, y$ are indep	pendent	iu the va	IUC OI K.	Also pro	Jve that				
4. (a)	The fol	llowing	table r	epresents	s the j	oint pro	obability			
	distribut	ion of the	e discrete	e RV (X	Y). Find	I all the	marginal			
	Y	X		<u>, , , , , , , , , , , , , , , , , , , </u>						
	1	2	3					BTL-2	Understanding	CO 3
	1 1/2	2 1/6	<u>6</u> 0	_						
	$\frac{2}{3}$ $\frac{1}{2}$	1/9	$\frac{1}{5}$	_						
_	Find the	e margin	hal distr	ibution	of X a	nd Y a	ind also		TT 1 - "	
5.	$P(P(X \leq$	$\leq 1, Y \leq 1$	1),					BTL-2	Understanding	03

	$P(X \le 1), P(Y \le 1)$. Check whether X and Y are			
	independent. The joint probability mass function of X and Y			
	is			
	$\begin{array}{ c c c } Y & 0 & 1 & 2 \\ \hline \end{array}$			
	X			
	0 0.10 0.04 0.02			
	The joint pdf of two dimensional random variables (X,Y) is			
	given by			
6.	$\int_{f(x, y)=} \frac{25e^{-3y}, 0 < x < 0.2, y > 0}{\text{Find the covariance of x and}}$	BTL-4	Analyzing	CO 3
0.	0, otherwise	212 .	g	000
	y.			
	If the joint pdf of a two-dimensional $RV(X,Y)$ is give			
	n by	~		
7.	$\int f(x, y) = \begin{cases} x^2 + \frac{xy}{3}; \ 0 < x < 1, \ 0 < y < 2 \end{cases}$ Find (i)	1 C		
	0, elsewhere	BTL-3	Applying	CO 3
	$P\left(X > \frac{1}{2}\right)$	0		
	$\begin{pmatrix} 2 \\ (1) \\ (2) $	5		
	$(II) P(I < \frac{1}{2}, X < \frac{1}{2}) (III) P(I < \frac{1}{2}, X < \frac{1}{2})$	5	-	
8.	The joint pdf of a two dimensional random variable (X, Y)	1		
	1s given by r^2			
	$f(x,y) = xy^2 + \frac{x}{8}, 0 \le x \le 2, 0 \le y \le 1$. Compute	BTL-3	Applying	CO 3
	(i) $P(X > 1 / Y < \frac{1}{2})$ (ii) $P(Y < \frac{1}{2} / X > 1)$ (iii) $P(X + \frac{1}{2} / X > 1)$ (iii) $P(X + \frac{1}{2} / X > 1)$			
	V < 1			
9.(a)	(b) The joint pdf of X and Y is given by			
<i>>•</i> (u)	(kx(x - y), 0 < x < 2, -x < y < x)			~ ~ ~
	$\begin{cases} f(x,y) = \\ 0, & otherwise \end{cases}$	BTL-3	Applying	CO 3
	(i)Find K (ii) Find $f_x(x)$ and $f_y(y)$			
10.	Find the Coefficient of Correlation between industrial			
	production and export using the following table	DTI 2	Applying	CO_{2}
	Production (X) 14 17 23 21 25	DIL-3	Apprying	05
	Export (Y) 10 12 15 20 23			
11.	Find the correlation coefficient for the following heights of			
	tathers X, their sons Y and also find the equations of			
	regression lines. Hence find the height of son when the	BTL-3	Applying	CO 3
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $			
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			
12	$\begin{array}{c c c c c c c c c c c c c c c c c c c $			
12.	X = 50 = 55 = 50 = 60 = 65 = 65 = 60 = 60	BTL-2	Understanding	CO 3
	Y 11 14 13 16 16 15 15 14 13			

13.	If $f(x,y) = \frac{6-x-y}{x}$, $0 \le x \le 2$, $2 \le y \le 4$ for a bivariate			
	random variable (X.Y). Evaluate the correlation coefficient	BTL-3	Applying	CO 3
	ρ.			
14.	Two random variables X and Y have the joint density			
	function	BTL-4	Analyzing	CO 3
	$f(x, y) = x + y, 0 \le x \le 1, 0 \le y \le 1.$			
15	Evaluate the Correlation coefficient between X and Y.			
15.	The two regression lines are $4x-5y+33=0$ and $20x-9y=10/$.	DTI 4	Analyzing	CO_{2}
	coefficient between them	BIL-4	Analyzing	05
16.	If X and Y each follow an exponential distribution with			
10.	parameter 1 and are independent find the pdf of $U = X - Y$	BTL-3	Applying	CO 3
17.	If X and Y independent Random Variables with pdf			005
	a^{-x} $x \ge 0$ and a^{-y} $y \ge 0$. Derive the density function of			
	e^{-x} , $x \ge 0$ and e^{-x} , $y \ge 0$. Devise the density function of	BTL-3	Applying	CO 3
	$U = \frac{X}{W + W}$ and $V = X + Y$. Are they independent?	0		005
18	X + Y Two rendom variables V and V have the following joint	~		
10.	robability density function $f(x, y) =$	50		
	(x + y) = (x + y) + (x + y) + (x + y) = (x + y) + (x + y) + (x + y) + (x + y) = (x + y) + (x +	BTL-4	Analyzing	CO 3
	$\begin{cases} 1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0$	212	g	000
	function of the random variable $U = XY$.			
T IN TREE	IV TESTING OF HYDOTHESIS	•		
UNIT -	-IV TESTING OF HIPOTHESIS			
Samplin and F d goodne	ng distributions – Type I and Type II errors – Small and Lar distributions for testing of mean, variance and proportion – T ss of fit.	ge samples Sest for inc	s - Tests based on lependence of attr	Normal,t ributes and
Samplin and F c goodne	ng distributions – Type I and Type II errors – Small and Lar listributions for testing of mean, variance and proportion – T ss of fit.	ge samples 'est for inc	s - Tests based on lependence of attr	Normal ,t ributes and
Samplin and F c goodne Q.No.	ng distributions – Type I and Type II errors – Small and Lar distributions for testing of mean, variance and proportion – T ss of fit. Question	ge samples 'est for inc Bloom's Taxono	s - Tests based on lependence of attr Competence	Normal ,t ributes and Course Outcome
Samplin and F d goodne Q.No.	ng distributions – Type I and Type II errors – Small and Lar distributions for testing of mean, variance and proportion – T ss of fit. Question	ge samples 'est for inc Bloom's Taxono my Level	s - Tests based on lependence of attr Competence	Normal ,t ributes and Course Outcome
Samplin and F d goodne Q.No.	ng distributions – Type I and Type II errors – Small and Lar distributions for testing of mean, variance and proportion – T ss of fit. Question PART – A	ge samples 'est for inc Bloom's Taxono my Level	s - Tests based on lependence of attr Competence	Normal ,t ributes and Course Outcome
Samplin and F d goodne Q.No.	ng distributions – Type I and Type II errors – Small and Lar distributions for testing of mean, variance and proportion – T ss of fit. Question PART – A Define Statistics	ge samples 'est for inc Bloom's Taxono my Level BTL-1	s - Tests based on lependence of attr Competence Remembering	Normal ,t ributes and Course Outcome
Samplin and F c goodne Q.No. 1. 2.	ng distributions – Type I and Type II errors – Small and Lar distributions for testing of mean, variance and proportion – T ss of fit. Question PART – A Define Statistics Define Parameter.	ge samples 'est for inc Bloom's Taxono my Level BTL-1 BTL-1	s - Tests based on lependence of attr Competence Remembering Remembering	Normal ,t ributes and Course Outcome CO 4 CO 4
Samplin and F d goodne Q.No. 1. 2. 3.	ng distributions – Type I and Type II errors – Small and Lar distributions for testing of mean, variance and proportion – T ss of fit. Question PART – A Define Statistics Define Parameter. Explain null and alternate hypothesis.	ge samples 'est for ind Bloom's Taxono my Level BTL-1 BTL-1 BTL-1	s - Tests based on lependence of attr Competence Remembering Remembering Remembering	Course Outcome CO 4 CO 4 CO 4 CO 4
UNIT -Samplinand F dgoodneQ.No.1.2.3.4.	ng distributions – Type I and Type II errors – Small and Lar distributions for testing of mean, variance and proportion – T ss of fit. Question PART – A Define Statistics Define Parameter. Explain null and alternate hypothesis. Mention the various steps involved in testing of hypothesis.	ge samples 'est for inc Bloom's Taxono my Level BTL-1 BTL-1 BTL-1 BTL-1	s - Tests based on lependence of attr Competence Remembering Remembering Remembering Remembering	Course Outcome CO 4 CO 4 CO 4 CO 4 CO 4 CO 4
UNIT - Samplin and F d goodne Q.No. 1. 2. 3. 4. 5.	ng distributions – Type I and Type II errors – Small and Lar listributions for testing of mean, variance and proportion – T ss of fit. Question PART – A Define Statistics Define Parameter. Explain null and alternate hypothesis. Mention the various steps involved in testing of hypothesis. What is the essential difference between confidence limits and tolerance limits?	ge samples 'est for inc Bloom's Taxono my Level BTL-1 BTL-1 BTL-1 BTL-1 BTL-1	s - Tests based on lependence of attr Competence Remembering Remembering Remembering Remembering Remembering Remembering	Course Outcome CO 4 CO 4 CO 4 CO 4 CO 4 CO 4 CO 4 CO 4
UNIT - Samplin and F d goodne Q.No. 1. 2. 3. 4. 5. 6	ng distributions – Type I and Type II errors – Small and Lar distributions for testing of mean, variance and proportion – T ss of fit. Question PART – A Define Statistics Define Parameter. Explain null and alternate hypothesis. Mention the various steps involved in testing of hypothesis. What is the essential difference between confidence limits and tolerance limits? Define Standard Error	ge samples 'est for ind Bloom's Taxono my Level BTL-1 BTL-1 BTL-1 BTL-1 BTL-1	s - Tests based on lependence of attr Competence Remembering Remembering Remembering Remembering Remembering Remembering	Course Outcome CO 4 CO 4 CO 4 CO 4 CO 4 CO 4 CO 4 CO 4
UNIT - Samplin and F d goodne Q.No. 1. 2. 3. 4. 5. 6. 7.	ng distributions – Type I and Type II errors – Small and Lar distributions for testing of mean, variance and proportion – T ss of fit. Question PART – A Define Statistics Define Parameter. Explain null and alternate hypothesis. Mention the various steps involved in testing of hypothesis. What is the essential difference between confidence limits and tolerance limits? Define Standard Error. Define Type I and Type II error.	ge samples 'est for inc Bloom's Taxono my Level BTL-1 BTL-1 BTL-1 BTL-1 BTL-1 BTL-1 BTL-1 BTL-1	s - Tests based on lependence of attr Competence Remembering Remembering Remembering Remembering Remembering Remembering Remembering	Course Outcome CO 4 CO 4 CO 4 CO 4 CO 4 CO 4 CO 4 CO 4
UNIT - Samplin and F d goodne Q.No. 1. 2. 3. 4. 5. 6. 7. 8.	ng distributions – Type I and Type II errors – Small and Lar listributions for testing of mean, variance and proportion – T ss of fit. Question PART – A Define Statistics Define Parameter. Explain null and alternate hypothesis. Mention the various steps involved in testing of hypothesis. What is the essential difference between confidence limits and tolerance limits? Define Standard Error. Define Type I and Type II error. What are the parameters and statistics in sampling.	ge samples 'est for ind Bloom's Taxono my Level BTL-1 BTL-1 BTL-1 BTL-1 BTL-1 BTL-1 BTL-1 BTL-1 BTL-1 BTL-1	s - Tests based on lependence of attr Competence Remembering Remembering Remembering Remembering Remembering Remembering Remembering Remembering Understanding	Course Outcome CO 4 CO 4 CO 4 CO 4 CO 4 CO 4 CO 4 CO 4
UNIT - Samplin and F d goodne Q.No. 1. 2. 3. 4. 5. 6. 7. 8. 9.	ng distributions – Type I and Type II errors – Small and Lar distributions for testing of mean, variance and proportion – T ss of fit. Question PART – A Define Statistics Define Parameter. Explain null and alternate hypothesis. Mention the various steps involved in testing of hypothesis. What is the essential difference between confidence limits and tolerance limits? Define Standard Error. Define Type I and Type II error. What are the parameters and statistics in sampling. Define level of significance.	ge samples 'est for inc Bloom's Taxono my Level BTL-1 BTL-1 BTL-1 BTL-1 BTL-1 BTL-1 BTL-1 BTL-1 BTL-2 BTL-2	s - Tests based on lependence of attr Competence Remembering Remembering Remembering Remembering Remembering Remembering Remembering Understanding	Course Outcome CO 4 CO 4 CO 4 CO 4 CO 4 CO 4 CO 4 CO 4
UNIT - Samplin and F c goodne Q.No. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.	ng distributions – Type I and Type II errors – Small and Lar distributions for testing of mean, variance and proportion – T ss of fit. Question PART – A Define Statistics Define Parameter. Explain null and alternate hypothesis. Mention the various steps involved in testing of hypothesis. What is the essential difference between confidence limits and tolerance limits? Define Type I and Type II error. What are the parameters and statistics in sampling. Define level of significance. What is the test statistic for single proportion test?	ge samples 'est for ind Bloom's Taxono my Level BTL-1 BTL-1 BTL-1 BTL-1 BTL-1 BTL-1 BTL-1 BTL-2 BTL-2 BTL-2	s - Tests based on lependence of attr Competence Remembering Remembering Remembering Remembering Remembering Remembering Remembering Understanding Understanding	Course Outcome CO 4 CO 4 CO 4 CO 4 CO 4 CO 4 CO 4 CO 4
UNIT - Samplin and F d goodne Q.No. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.	ng distributions – Type I and Type II errors – Small and Lar listributions for testing of mean, variance and proportion – T ss of fit. Question PART – A Define Statistics Define Parameter. Explain null and alternate hypothesis. Mention the various steps involved in testing of hypothesis. What is the essential difference between confidence limits and tolerance limits? Define Standard Error. Define Type I and Type II error. What are the parameters and statistics in sampling. Define level of significance. What is the test statistic for single proportion test? A random sample of 25 cups from a certain coffee	ge samples 'est for inc Bloom's Taxono my Level BTL-1 BTL-1 BTL-1 BTL-1 BTL-1 BTL-1 BTL-1 BTL-1 BTL-2 BTL-2 BTL-2	s - Tests based on lependence of attr Competence Remembering Remembering Remembering Remembering Remembering Remembering Remembering Understanding Understanding	Course Outcome CO 4 CO 4 CO 4 CO 4 CO 4 CO 4 CO 4 CO 4
UNIT - Samplin and F d goodne Q.No. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.	ng distributions – Type I and Type II errors – Small and Lar listributions for testing of mean, variance and proportion – T ss of fit. Question PART – A Define Statistics Define Parameter. Explain null and alternate hypothesis. Mention the various steps involved in testing of hypothesis. What is the essential difference between confidence limits and tolerance limits? Define Standard Error. Define Type I and Type II error. What are the parameters and statistics in sampling. Define level of significance. What is the test statistic for single proportion test? A random sample of 25 cups from a certain coffee dispensing machine yields a mean x = 6.9 occurs per cup.	ge samples 'est for ind Bloom's Taxono my Level BTL-1 BTL-1 BTL-1 BTL-1 BTL-1 BTL-1 BTL-1 BTL-2 BTL-2 BTL-2	s - Tests based on lependence of attr Competence Remembering Remembering Remembering Remembering Remembering Remembering Understanding Understanding Understanding	Course Outcome CO 4 CO 4 CO 4 CO 4 CO 4 CO 4 CO 4 CO 4
UNIT - Samplin and F d goodne Q.No. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.	ng distributions – Type I and Type II errors – Small and Lar listributions for testing of mean, variance and proportion – T ss of fit. Question PART – A Define Statistics Define Parameter. Explain null and alternate hypothesis. Mention the various steps involved in testing of hypothesis. What is the essential difference between confidence limits and tolerance limits? Define Standard Error. Define Type I and Type II error. What are the parameters and statistics in sampling. Define level of significance. What is the test statistic for single proportion test? A random sample of 25 cups from a certain coffee dispensing machine yields a mean x = 6.9 occurs per cup. Use 0.05 level of significance to test, on the average, the	ge samples 'est for ind Bloom's Taxono my Level BTL-1 BTL-1 BTL-1 BTL-1 BTL-1 BTL-1 BTL-1 BTL-1 BTL-2 BTL-2 BTL-2 BTL-2 BTL-2	s - Tests based on lependence of attr Competence Remembering Remembering Remembering Remembering Remembering Remembering Understanding Understanding Understanding	Course Outcome CO 4 CO 4 CO 4 CO 4 CO 4 CO 4 CO 4 CO 4
UNIT - Samplin and F d goodne Q.No. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11.	ng distributions – Type I and Type II errors – Small and Lar distributions for testing of mean, variance and proportion – T ss of fit. Question PART – A Define Statistics Define Parameter. Explain null and alternate hypothesis. Mention the various steps involved in testing of hypothesis. What is the essential difference between confidence limits and tolerance limits? Define Standard Error. Define Type I and Type II error. What are the parameters and statistics in sampling. Define level of significance. What is the test statistic for single proportion test? A random sample of 25 cups from a certain coffee dispensing machine yields a mean x = 6.9 occurs per cup. Use 0.05 level of significance to test, on the average, the machine dispense $\mu = 7.0$ ounces against the null hypothesis	ge samples 'est for ind Bloom's Taxono my Level BTL-1 BTL-1 BTL-1 BTL-1 BTL-1 BTL-1 BTL-1 BTL-2 BTL-2 BTL-2 BTL-2 BTL-2	s - Tests based on lependence of attr Competence Remembering Remembering Remembering Remembering Remembering Remembering Understanding Understanding Understanding	Course Outcome CO 4 CO 4 CO 4 CO 4 CO 4 CO 4 CO 4 CO 4

	Assume that the distribution of ounces per cup is normal,			
	and that the variance is the known quantity $\sigma^2 = 0.01$ ounces			
	Twenty people were attacked by a disease and only 18 were			
	survived. The hypothesis is set in such a way that the			
12.	survival rate is 85% if attacked by this disease. Will you	BTL-2	Understanding	CO 4
	reject the hypothesis that it is more at 5% level.($Z_{0.05} =$		C	
	1.645).			
	In a large city A, 20 percent of a random sample of 900			
	school boys had a slight physical defect. In another large			
13.	city B, 18.5 percent of a random sample of 1600 school	BTL-2	Understanding	CO 4
	boys had some defect. Is the difference between the			
	proportions significant?			
	A standard sample of 200 tins of coconut oil gave an			
14	average weight of 4.95 kg with a standard deviation of 0.21	BTL-2	Understanding	CO4
17.	kg. Do we accept that the net weight is 5 kg per tin at 5%	DIL 2	Chaerstanding	001
	level of significance?			
	Write down the formula of test statistic 't' to test the	DTLA	TT 1	
15.	significance of difference between the population mean and	BTL-2	Understanding	CO 4
	sample mean.	10		
16 .	write down the formula of test statistic 't' to test the	BTL-1	Remembering	CO 4
17	Significance of difference between two sample means.	DTI 1	Domomboring	CO 4
17.	What is the assumption of t-test?	BTL-1	Remembering	$\frac{0.04}{0.04}$
10. 10	Write the application of 'E' test	BTL-1	Remembering	$\frac{0.04}{0.04}$
<u> </u>	Define 'F' variate	BTL-1	Remembering	$\frac{c04}{C04}$
20.	What are the properties of "F" test?	BTL-1	Remembering	$\frac{CO +}{CO 4}$
21.	Write the formula for the chi-square test of goodness of fit	DIL-I	Kennenhoernig	0.0 +
22.	of a random sample to a hypothetical distribution	BTL-1	Remembering	CO 4
23.	State the main use of w^2 -test	BTL1	Remembering	CO 4
	What are the expected frequencies of $2x^2$ contingency	DILI	Itemeting	001
	table?			
24.		BTL2	Understanding	CO 4
		DTI 1	D	
25.	State any two applications of ψ^2 -test.	BILI	Remembering	CO 4
	PARI-B			
	A sample of 100 students is taken from a large population			l
	The mean height of the students in this sample is 160cms.		TT 1	
1(a)	Can it be reasonably regarded that this sample is from a	BTL-2	Understanding	CO 4
_()	population of mean 165 cm and standard deviation 10 cm?			
	The heights of 10 males of a given locality are found to be			
1(1.)	70, 67, 62, 68, 61, 68, 70, 64, 64, 66 inches. Is it reasonable		TTo do not on d'une	CO 4
1(0)	to believe that the average height is greater than 64 inches?	BIL-2	Understanding	CO 4
	Given the following table for hair color and eye color,			
2	Given the following table for hair color and eye color, identify the value of Chi-square. Is there good association	BTI -1	Remembering	CO 4
2.	Given the following table for hair color and eye color, identify the value of Chi-square. Is there good association between hair color and eye color?	BTL-1	Remembering	CO 4

			Fair	Brown	Black	Т	otal		
	Eye	Blue	15	5	20	4	0		
	color	Grey	20	10	20	5	0		
		Brown	25	15	20	6	0		
		Total	60	30	60	1:	50		
	Two indepen	dent sampl	es of size	s 8 and 7 co	ontained th	ne			
2	ionowing var	ucs.			- 1 1			A 1 '	CO 4
3.	Sample I	19 17	15 2	1 16 18	16 14		BIL3	Applying	CO 4
	Sample II	15 14							
	Test if the two	o populatio	hs have the	e same mean.	· 				
	Two independ	lent sample	s of 8 and	/ items resp	ectively				
	Lise 0.05 L OS	ving values	of the val	riable (weigh	t in kgs.)				
	0.05 LO.								
4.	Sample I	9 11	13 1	1 15 9	12 14	1	BTL3	Applying	CO 4
	Sample II	10 12	10 14	4 9 8	10	4	~		
	Whether the v	variances of	the two p	opulation's s	ample are		6		
	equal.						0		
	Two random	samples ga	ve the foll	owing results	s:		0		
	Sample Size	Sample m	ean Si	im of squares	s of		5		
5(a)	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							Applying	CO 4
5(a)									CO 4
	Analyze whe	ther the sa	mples has	rue come froi	m the sam	10			
	normal popul	ation		ve come noi	in the san				
	The mean b	raking stre	ngth of	the cables s	supplied b)V			
	manufacture	is 1800 with	n S. <mark>D 100</mark>	. By a new t	technique	in			
	the manufact	uring proce	ess <mark>it is c</mark> l	aimed that t	he bre <mark>akir</mark>	ng			CO 4
5(b)	strength of th	ne cable ha	s increase	d. To test t	this cl <mark>aim</mark>	a	BTL3	Applying	
	sample of 50	cables is	tested and	is found the	at the mea	an			
	braking stren	gth is 1850	Can we	support the o	claim at 19	%			
	level of signif	footcarry 41	10 0m t	indensed	+	•			
	manufacturin	actory the	item T	be average y	n processo weight in	es 2			
	sample of 25) items prov	luced from	n one process	s is found i	a to			
6.	be 120 Ozs	with a stand	ard deviat	ne	BTL3	Applying	CO 4		
••	corresponding	g figures in	a sample	ne	DIL	1.199138	001		
	other process are 124 and 14. Is the difference between the								
	two sample m	neans signif	icant?						
	Records take	n of the nu	mber of m	nale and fema	ale births	in			
	800 families l	naving four	Children	are as follows	s :				
_	Number of m	ale births	: 0	1 2 1	3 4				
7.	Number of fe	male births	: 4	3 2	1 0		BTL4	Analyzing	CO 4
	Inumber of Fa	the dete are	: 32	1/8/290/2	250 64	ot			
	the binomial	une uata are	the chance	n will the hyperate h	jouresis in	at al			
		1	-16 - a		n in is equ	aı			
6.	braking strength is 1850. Can we support the claim at 1% level of significanceIn a certain factory there are two independent processes manufacturing the same item. The average weight in a sample of 250 items produced from one process is found to be 120 Ozs, with a standard deviation of 12 Ozs, while the corresponding figures in a sample of 400 items from the other process are 124 and 14. Is the difference between the two sample means significant?Records taken of the number of male and female births in 800 families having four Children are as follows : Number of male births : 4 3 2 1 0 Number of Families : 32 178 290 236 64 Infer whether the data are consistent with the hypothesis that the binomial law holds the chance of a male birth is equal							Applying Analyzing	CO 4

8.	A survey of 320 families with 5 children each revealed the											
	following distribution											
	Boys	5	4	3		2	1	0				
	Girls	0	1	2		3	4	5		BTL3	Applying	CO 4
	Families	14	56	1	10	88	40	12				
	Is this resu	ult con	sisten	t with	the hy	pothesi	is that	male an	nd			
	female births are equally probable?											
9.	The nicoti	ne cont	ent in	millig	gram of	f two sa	imples of	of toboc	co			
	where four	id to be	e as to	ollows	01	25						
	Sample 1	24	27	26	21	25 22 26	5			BTL-1	Remembering	CO 4
	Con it bo	27	50 that	20 this s	JI . ampla	22 30) va from	norm	<u>_1</u>			
	nonulation	with tl	uiai ne san	ne mes	ampie	s when	e non		ai			
10.	A group of	f 10 rat	s fed o	on diet	A and	lanothe	er grour	of 8 rat	ts			
10.	fed on diet	B. Rec	orded	l the fo	llowin	g increa	ase the f	ollowin	ng			
	increase in	weigh	t.(gm))		8		S. R. /	-0			
	Dist A	5		0 1	12	4 2		6 10		BTL-2	Understanding	CO 4
	Diet A	2	0	8 1	12	4 3	5 9 0 0	6 10)	DIL-2	Onderstanding	0.04
	Diet B	Z	3	0 0	10	1 2	0	- -		0		
	Find the va	ariance	s are s	ionific	antly	differen	t (Use	F-test)	-	0		
11.	Mechanica	l engir	eers t	esting	a new	arc we	lding te	chnique	e.	- C		
	classified v	welds t	oth w	vith res	spect to	o appea	rance a	nd an X	ζ-	5	-	
	ray inspect	ion			1	11						CO 4
	X-ray/Ap	pearan	ce	Bad	Nor	mal C	bood				A	
	Bad			20	7	3				BILS	Applying	
	Normal			13	51	1	6					
	Good			7	12	2	1					
	Test for inc	depend	ence	using ().05 le	vel of si	ignifica	nce.				
12.	A sample	of 200	0 per	sons v	vith a	particu	lar dis	ease wa	as			
	selected. C	ot of tl	nese, i	100 we	ere giv	en a dru	ig and t	he other	rs			
	were not g	iven an	ly dru	g. The	result	are as f	ollows:					
	Number o	of perso	ons	Ι	Drug	No	Т	otal			Understanding	CO 4
	Cured				65	55	1	20		DIL-2	Understanding	CO 4
	Not cured	1			35	45		30				
	Total	•			100	100	2	00				
	Test wheth	her the	drug i	s effec	tive or	not?		00				
13.	The follow	ving da	ita giv	ves the	numb	per of a	ircraft	accident	ts			
	that occur	red du	ring	the va	rious	days of	f a we	ek. Fin	nd			
	whether the accidents are uniformly distributed over the								ne			
	week						,	BTI 3	Applying	CO4		
	Days S	Sun N	Aon	Tues	Wed	Thu	Fri	Sat			, pp. j. mg	007
	No. of	14	16	00	10	1.1		1.4				
	accid	14	10	08	12		9	14				
14	The riset		ant in	m;11: -		ture ac:		ftabari				
14.	where four	ne conte	ent m	niing	tect +1	two sai	npies 0 ficant d	i iODacc		BTI /	Analyzing	CO 4
	hetween m	la to be	the t	WO Sat	, iesi ii nnles	ic sigili	ncallt U			DIL4	Anaryzing	0.04
14.	The nicotir where four between m	ne contr nd to be leans of	ent in e as fo f the t	millig ollows wo sat	ram of , test tl nples	two sai ne signi	mples o ficant d	t tobacc	co ce	BTL4	Analyzing	CO 4

	Sample I 21 24	4 <u>25</u>	26 27	-				
15	The merily obtained h	28	30 31	30	a atradanta			
15.	and another group of	y a grou	time course	ir cour studer	se students			
	are given below .	11 part						
	Comple I 56 62 6	2 51 6	0 51 67	<u> </u>				
	Sample 1 56 62 6	3 54 6	51 67	59 58		BTL3	Applying	CO 4
	Sample II 62 70 7	1 62 6	50 56 75	64 72	68 66	_	FF 7 8	
	Examine whether the	marks	obtained by	regul	ar students			
	and part-time student	s differ	significantly	/ at 5%	% levels of			
	significance							
16(a)	A simple sample of he	eights of	6400 Englis	hmen	has a mean			
	of 170cms and a sta	indard o	leviation of	6.4cm	ns, while a			
	simple sample of heig	ts of 1	600 America	ans has	s a mean of	BTL4	Analyzing	CO 4
	172 cm and a standa	rd devia	ation of 6.30	cms. L	Do the data		, ,	
	Englishmon?	ans are,	, on the ave	erage,	taller than			
16(b)	The theory predicts the	at the n	opulation of	heans	in the four	0		
10(0)	groups A B C and I) should	be $9\cdot3\cdot3\cdot1$	In an	experiment	0		
	among 1600 beans.	the nun	ber in the	four s	roups was	BTL4	Analyzing	CO 4
	882,313,287 and 118	. Do the	experiment	al resu	ilts support	1	y8	
	the survey?		· C			1		
17(a)	The mean population	of a rar	ndom sample	of 40	00 villages			
	in Jaipur district wa	s found	to be 400	with	a standard			
	deviation of 12. The	mean p	opulation of	a rand	om sample	BTL3	Applying	CO 4
	of 400 villages in Me	erut dist	rict was four	nd to b	be 395 with	DILS	r ippijing	001
	standard deviation of	15. Is t.	he difference	betwe	een th <mark>e two</mark>			
17(b)	district's means statis	hearwati	ignificant?	mof	aquaras of			
1/(0)	deviation of the same	bservau	ons, the sub s from the s	ui Oi amnle	mean was			
	84 4 and in the other s	ample o	f 10 observat	ions it	was 102.6			
	Test whether this diffe	erence is	significant a	at 5%	evel, given	BTL3	Applying	CO 4
	that the 5% point of F	for v1=	7 and v2=9	defers	of freedom			
	is 3,27							
18.	Test of fidelity and	selecti	vity of 190	radio	o receivers			
	produced the results s	hown in	the followin	ig table	e			
		Fidelit	y	r				
	Selectivity	Low	Average	High	1			GO 4
	Low	6	12	32		BTL4	Analyzing	CO 4
	Average	33	6l	18	_			
	High	15	15 20. to to to	U hothai	thora is a			
	relationship between	fidelity (ue to test W	nether	mere is a			
IINIT -			VSIS Rand	y. Iom V	ectors and m	atrices - N	Mean vectors and	covariance
matrice	s – Multivariate norm	al densi	ty and its pr	opertie	es = Princin	al compor	ents – Populatio	n principal
compoi	nents – Principal com	ponents	– Populatio	on prir	ncipal comp	onents –	Principal compo	nents from
standar	dized variables.		r	r-m	r ·····P		r	• -••

		Bloom'	Competence	Course
O N-	Oracian	S		Outcom
Q.No.	Question	1 axono		e
		IIIY Lovol		
	PART – A	Level		
1.	Define random vector.	BTL-1	Remembering	CO 5
2.	Define covariance matrix	BTL-1	Remembering	CO 5
3.	State the properties of multivariate normal density.	BTL-2	Understanding	CO 5
4.	Define Principal component analysis.	BTL-1	Remembering	CO 5
5.	Define total population variance.	BTL-2	Understanding	CO 5
6.	State the general objectives of principal components analysis.	BTL-2	Understanding	CO 5
7.	Define the expected value of a random matrix.	BTL-1	Remembering	CO 5
8.	$If \sum = \begin{pmatrix} 4 & 1 & 2 \\ 1 & 9 & -3 \\ 2 & -3 & 25 \end{pmatrix} and V^{1/2} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 5 \end{pmatrix} \text{ find } \rho$	BTL-2	Understanding	CO 5
9.	If $\sum = \begin{pmatrix} 4 & 1 & 2 \\ 1 & 9 & -3 \\ 2 & -3 & 25 \end{pmatrix}$ Find the standard deviation matrix $V^{1/2}$	BTL-2	Understanding	CO 5
10.	If $X = \begin{pmatrix} 42 & 4 \\ 52 & 5 \\ 48 & 4 \end{pmatrix}$ Find \overline{x} .	BTL-2	Understanding	CO 5
11.	Define second principle component.	BTL-1	Remembering	CO 5
12.	If X_1 and X_2 are two uncorrelated random variables, then what is the correlation coefficient matrix.	BTL-2	Understanding	CO 5
13.	Define multivariate analysis.	BTL-1	Remembering	CO 5
14 .	State random matrices.	BTL-1	Remembering	CO 5
15.	Establish the condition density of bivariate normal distribution.	BTL-2	Understanding	CO 5
16 .	Explain correlation of variables and components.	BTL-2	Understanding	CO 5
17.	Enumerate rescaling the principal components.	BTL-2	Understanding	CO 5
18.	Define first principal component.	BTL-1	Remembering	CO 5
19 .	what is the formula to compute the population variance due to k^{th} principal component.	BTL-2	Understanding	CO 5
20.	Explain the principal components obtained from standardized variables.	BTL-2	Understanding	CO 5
21.	Define correlation coefficient in terms of variance and covariance	BTL-2	Understanding	CO 5
22.	Write the matrix notation for principal component from standardized variables	BTL-2	Understanding	CO 5
23.	Write any one theorem about principal component.	BTL-1	Remembering	CO 5
24.	Write any two properties of multivariate normal distribution.	BTL-2	Understanding	CO 5
25.	Write the multivariate normal density function.	BTL-1	Remembering	CO 5
	PART –B			
1.	Compute the covariance matrix with the following data.	BTL-2	Understanding	CO 5

	X1	0	1	$\mathbf{D}_{i}(\mathbf{x}_{i})$				
	X2	0	1	F 1(X1)				
	-1	0.24	0.06	0.3				
	0	0.16	0.14	0.3				
	1	0.40	0	0.4				
2.	Explain partiti	ioning the cova	BTL-2	Remembering	CO 5			
3.	Explain the m combination of	ean vector and f random varia	covariance ma bles	atrix for linear		BTL-3	Applying	CO 5
4.	Discuss Bivari	ate normal den	sity.			BTL-3	Applying	CO 5
5.	Prove that the are the eigen v	correlation coe alues – eigen v	efficient betwe ector pairs fo	en the compon r sigma.	ents	BTL-4	Analyzing	CO 5
6.	Consider the r random variab the following p	andom vector X_1 le X_1 have the f $X_1 = -1$ $P_1(X_1) = 0.3$ probability fund $X_2 = 0$ $P_1(X_1) = 0$	$X' = \{X_1, X_2\}$ following prob 0 0.3 etion 8 0.2	} The discrete bability function 1 0.4 and X ₂ h	n : nave	BTL-3	Applying	CO 5
7.	Let the random matrix $\Sigma = \begin{pmatrix} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$\begin{array}{cccc} n \text{ variables } X_{1}, \\ 1 & -2 & 0 \\ -2 & 5 & 0 \\ 0 & 0 & 2 \\ \hline Y_{1}, Y_{2}, \\ 3 \end{array}$	X ₂ and X ₃ hav	the covarianc	e	BTL-4	Analyzing	CO 5
8.	Let X _{3x1} be l independent?	N₃(μ, σ) with What about (X	$\sum_{n} \sum_{n} = \begin{pmatrix} 4 & 1 \\ 1 & 2 \\ 0 & 0 \\ 1, X_2 \end{pmatrix} \text{ and } X_3.$	$ \begin{array}{cc} 1 & 0 \\ 3 & 0 \\ 0 & 2 \end{array} \right) \text{Are X} $	1, X ₂	BTL-3	Applying	CO 5
9.	Discuss princip	pal components	from standar	dized variables.		BTL-4	Analyzing	CO 5
10.	Explain princi	pal component	population.			BTL-3	Applying	CO 5
11.	Let X be distr $N_3(\mu, \Sigma)$ we which of the for Explain i) X ₁ and X ₂ ii) X ₁ and X ₃ iii) X ₂ and X ₃ iv)(X ₁ , X ₃) and	ributed as $here \ \mu' = (1, -$ blowing random d X ₂	BTL-4	Analyzing	CO 5			
12.	For the covar correlation man components of are different.	iance matrix Σ trix P = $\begin{pmatrix} 1\\ 0.4 \end{pmatrix}$	BTL-3	Applying	CO 5			

13.	Prove that If Σ is positive definite so that Σ^{-1} exists the $\sum e = \lambda e = \Sigma^{-1} e = \left(\frac{1}{\lambda}\right) e$ so (λ, e) is an eigen value – eigen vector pair for Σ corresponding to the pair $(\frac{1}{\lambda}, e)$ for Σ^{-1} , also Σ^{-1} is positive definite.	BTL-3	Applying	CO 5
14.	Prove that the distribution of two linear combination of the components of a random vector.	BTL-4	Analyzing	CO 5
15.	Compute the principal components to the following matrix $A = \begin{pmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{pmatrix}$	BTL-3	Applying	CO 5
16.	Compute the principal components to the following matrix $A = \begin{pmatrix} 5 & 0 & 3 \\ 4 & 2 & 5 \\ 2 & -2 & -2 \end{pmatrix}$	BTL-3	Applying	CO 5
17.	Compute the principal component to the variance covariance matrix $\Sigma = \begin{pmatrix} 1 & 4 \\ 4 & 100 \end{pmatrix}$	BTL-3	Applying	CO 5
18.	If $\sum = \begin{pmatrix} 25 & -2 & 4 \\ -2 & 4 & 1 \\ 4 & 1 & 9 \end{pmatrix}$ then find (i) V ^{1/2} and ρ (ii) Show that $V^{1/2} \rho V^{1/2} = \rho$	BTL-3	Applying	CO 5

