# SRM VALLIAMMAI ENGINEERING COLLEGE

## (An Autonomous Institution)

SRM Nagar, Kattankulathur – 603 203

# **DEPARTMENT OF COMPUTER APPLICATIONS**

## **QUESTION BANK**



**I SEMESTER** 

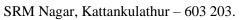
MC4161 -ADVANCED DATA STRUCTURES AND ALGORITHMS

Regulation – 2024

Academic Year 2024-2025 (ODD Semester)

Prepared by

Dr.D.Sridevi


**Associate Professor** 

**Department of Computer Applications** 



SRM VALLIAMMAI ENGINEERING COLLEGE

(An Autonomous Institution)





#### DEPARTMENT OF COMPUTER APPLICATIONS

#### **QUESTION BANK**

#### SUBJECT : MC4161 -ADVANCED DATA STRUCTURES AND ALGORITHMS

#### SEM / YEAR: I SEM / I Year

|       | UNIT I - LINEAR DATA STRUCTURES                                                                                                                                                       |      |       |            |  |  |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------|------------|--|--|
|       | Abstract Data Types (ADTs) – List ADT – Array-Based Implementation<br>Doubly-Linked Lists – Circular Linked Lists – Stack ADT: Implementa<br>Implementation of Queues – Applications. |      |       | -          |  |  |
|       | PART-A                                                                                                                                                                                |      |       |            |  |  |
| Q.No. | Question                                                                                                                                                                              | CO's | Level | Competence |  |  |
| 1     | Define Abstract Data Type. Give any two examples.                                                                                                                                     | CO1  | BTL1  | Remember   |  |  |
| 2     | Define data structure.                                                                                                                                                                | CO1  | BTL2  | Understand |  |  |
| 3     | List out the areas in which data structures are applied extensively.                                                                                                                  | CO1  | BTL1  | Remember   |  |  |
| 4     | Distinguish between linear and nonlinear data structures.                                                                                                                             | CO1  | BTL1  | Remember   |  |  |
| 5     | Compare between linear linked list and circular linked list.                                                                                                                          | CO1  | BTL2  | Understand |  |  |
| 6     | Define an array. Give an examp <mark>le.</mark>                                                                                                                                       | CO1  | BTL2  | Understand |  |  |
| 7     | List the advantages of linked list.                                                                                                                                                   | CO1  | BTL1  | Remember   |  |  |
| 8     | Examine a doubly linked list with neat diagram.                                                                                                                                       | CO1  | BTL1  | Remember   |  |  |
| 9     | Interpret the advantages and disadvantages of linked lists over arrays.                                                                                                               | CO1  | BTL2  | Understand |  |  |
| 10    | Define stack ADT.                                                                                                                                                                     | CO1  | BTL1  | Remember   |  |  |
| 11    | Given the prefix for an expression. Write its postfix:<br>++ <b>A</b> * <b>BCD</b> and +* <b>AB</b> * <b>CD</b>                                                                       | CO1  | BTL2  | Understand |  |  |
| 12    | Given an infix expression convert it into postfix expression usingstack <b>a+b*(c^d-e)^(f+g*h)-i</b>                                                                                  | CO1  | BTL2  | Understand |  |  |
| 13    | Write the postfix and prefix forms of the expression: $A+B*(C-D)/(P-R)$                                                                                                               | CO1  | BTL2  | Understand |  |  |
| 14    | Give the purpose of top and pop with suitable example.                                                                                                                                | CO1  | BTL2  | Understand |  |  |
| 15    | What are the two kinds of dequeue?                                                                                                                                                    | CO1  | BTL2  | Understand |  |  |
| 16    | How to implement stack using linked list?                                                                                                                                             | CO1  | BTL2  | Understand |  |  |
| 17    | What are priority queues? What are the ways to implement priority queue?                                                                                                              | CO1  | BTL1  | Remember   |  |  |

| 18 | What is circular queue?                                           | CO1 | BTL1 | Remember   |
|----|-------------------------------------------------------------------|-----|------|------------|
| 19 | Circular queue is better than standard linear queue, why?         | CO1 | BTL2 | Understand |
| 20 | Convert A*(B+D)/E-F*(G+H/K) into postfix expression.              | CO1 | BTL2 | Understand |
| 21 | Show a routine to perform enqueue operation in a queue.           | CO1 | BTL2 | Understand |
| 22 | Differentiate between double ended queue and circular queue.      | CO1 | BTL1 | Remember   |
| 23 | Write an algorithm for deleting an element in a double endedqueue | CO1 | BTL1 | Remember   |
| 24 | List any four applications of stack.                              | CO1 | BTL1 | Remember   |

| Q.No. | Question                                                                                                                                                                                          | Marks    | CO's | Level | Competence |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------|-------|------------|
| 1     | Write the algorithm for performing operations in a stack. Trace your algorithm with suitable example.                                                                                             | 16       | CO1  | BTL4  | Analyze    |
| 2     | What is Linked List? and write Function to test whether a linked list is empty, Function to test whether current position is the last in a linked list, Function to find the element in the list. | <u> </u> | CO1  | BTL6  | Create     |
| 3     | Develop a C program for linked list implementation of list.                                                                                                                                       | 16       | CO1  | BTL6  | Create     |
| 4     | <ul> <li>(i)Explain the list ADT's various operations (Linked and array based) with examples.</li> <li>(ii)Explain the list ADT's various operations (Array based) with examples.</li> </ul>      | 8<br>8   | CO1  | BTL3  | Apply      |
| 5     | Analyze and write procedure for circular linked list with create, insert, delete, display operations.                                                                                             | 16       | CO1  | BTL3  | Apply      |
| 6     | Discuss the creation of a doubly linked list and write routine to insert an element in doubly linked list and delete an element in doubly linked list.                                            | 16       | CO1  | BTL4  | Analyze    |
| 7     | Examine the algorithms to implement the doubly linked list<br>and perform all the operations on creating the doubly<br>linked list.                                                               | 16       | CO1  | BTL4  | Analyze    |
| 8     | Illustrate the various operation in circular linked lists.                                                                                                                                        | 16       | CO1  | BTL3  | Apply      |
| 9     | <ul> <li>(i) Give an algorithm for push and pop operations on stack using a linked list with an example.</li> <li>(ii) Describes the function to example whether the</li> </ul>                   | 8        | CO1  | BTL4  | Analyze    |
|       | (ii) Describe the function to examine whether the stack is full () or empty ().                                                                                                                   | 8        |      |       |            |
| 10    | (i)Give an algorithm to convert an infix expression to a postfixexpression using stack.                                                                                                           | 8        | CO1  | BTL4  | Analyze    |
| 10    | (ii)Convert an infix expression to a postfix expression using stack with suitable example.                                                                                                        | 8        | COI  | DIL4  | 7 mary 20  |
| 11    | Convert an infix expression to a postfix expression using stack with suitable example.                                                                                                            | 10       | CO1  | BTL5  | Evaluate   |
| 12    | (i)Convert an infix expression to a postfix expression using stack for the following expression: $((A + B) - C * (D / E)) + F$                                                                    | 8<br>8   | CO1  | BTL6  | Create     |

|    | (ii) Convert an infix expression to a prefix expression using stack for the following expression: $((A + B) - C * (D / E)) + F$                                |    |     |      |          |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|------|----------|
| 13 | Prepare an algorithm to perform the operations in a double ended queue.                                                                                        | 16 | CO1 | BTL5 | Evaluate |
| 14 | What is a DeQueue? Explain its operation with example?                                                                                                         | 16 | CO1 | BTL3 | Apply    |
| 15 | What is a EnQueue? Explain its operation with example?                                                                                                         | 16 | CO1 | BTL5 | Evaluate |
| 16 | Develop a C program for linked list implementation of stack.                                                                                                   | 16 | CO1 | BTL4 | Analyze  |
| 17 | What are circular queues? Explain the procedure to insert an element in circular queue and delete an element from a circular queue using array implementation. | 16 | CO1 | BTL5 | Evaluate |

|       | UNIT II - ALGORITHMS IN COMPUTING                                                                                                                                                                           |           |       |            |  |  |  |  |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------|------------|--|--|--|--|
|       | Introductions to Algorithms – Iterative and Recursive Algorithms –<br>Algorithms – Growth of Functions: Asymptotic Notations – Standard<br>– Recurrences: The Substitution Method – The Recursion – Tree Me | Notations |       |            |  |  |  |  |
|       | PART-A                                                                                                                                                                                                      |           |       |            |  |  |  |  |
| Q.No. | Question                                                                                                                                                                                                    | CO's      | Level | Competence |  |  |  |  |
| 1     | What do you mean by algorithm?                                                                                                                                                                              | CO2       | BTL1  | Remember   |  |  |  |  |
| 2     | What is performance measurement?                                                                                                                                                                            | CO2       | BTL2  | Understand |  |  |  |  |
| 3     | What are the types of algorithm efficiencies?                                                                                                                                                               | CO2       | BTL1  | Remember   |  |  |  |  |
| 4     | What is space complexity?                                                                                                                                                                                   | CO2       | BTL1  | Remember   |  |  |  |  |
| 5     | Define asymptotic notations.                                                                                                                                                                                | CO2       | BTL2  | Understand |  |  |  |  |
| 6     | Define the asymptotic notation "Big oh" (0)                                                                                                                                                                 | CO2       | BTL2  | Understand |  |  |  |  |
| 7     | Difference between Best Case and Worst-Case Complexities                                                                                                                                                    | CO2       | BTL1  | Remember   |  |  |  |  |
| 8     | Define the asymptotic notation "Omega" ( $\Omega$ ).                                                                                                                                                        | CO2       | BTL1  | Remember   |  |  |  |  |
| 9     | Define the asymptotic notation "theta" $(\theta)$                                                                                                                                                           | CO2       | BTL2  | Understand |  |  |  |  |
| 10    | Design an algorithm for computing area and circumference of the circle.                                                                                                                                     | CO2       | BTL1  | Remember   |  |  |  |  |
| 11    | How do you measure the efficiency of an algorithm?                                                                                                                                                          | CO2       | BTL2  | Understand |  |  |  |  |
| 12    | Write down the properties of asymptotic notations?                                                                                                                                                          | CO2       | BTL2  | Understand |  |  |  |  |
| 13    | What is a basic operation?                                                                                                                                                                                  | CO2       | BTL2  | Understand |  |  |  |  |
| 14    | What is validation of algorithm?                                                                                                                                                                            | CO2       | BTL2  | Understand |  |  |  |  |
| 15    | What is recursive algorithm?                                                                                                                                                                                | CO2       | BTL2  | Understand |  |  |  |  |
| 16    | Define recurrence                                                                                                                                                                                           | CO2       | BTL2  | Understand |  |  |  |  |

| 17 | Give the general plan for analyzing recursive algorithm              | CO2 | BTL1 | Remember   |
|----|----------------------------------------------------------------------|-----|------|------------|
| 18 | What are all the methods available for solving recurrence relations? | CO2 | BTL1 | Remember   |
| 19 | Define Substitution Method                                           | CO2 | BTL2 | Understand |
| 20 | What are the applications of Algorithm Visualization?                | CO2 | BTL2 | Understand |
| 21 | List the reasons for choosing an approximate algorithm.              | CO2 | BTL2 | Understand |
| 22 | How to measure an algorithm running time?                            | CO2 | BTL1 | Remember   |
| 23 | What are the types of recurrence relations?                          | CO2 | BTL1 | Remember   |
| 24 | What are all the methods available for solving recurrence relations? | CO2 | BTL1 | Remember   |

| Q.No. | Question                                                                                                                                                                                                     | Marks   | CO's | Level | Competence |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------|-------|------------|
| 1     | Discuss briefly the sequence of steps in designing and analyzing an algorithm.                                                                                                                               | 16      | CO2  | BTL4  | Analyze    |
| 2     | Define the asymptotic notations used for:<br>(i)Best case<br>(ii)Average case and Worst-case analysis with an example.                                                                                       | 6<br>10 | CO2  | BTL6  | Create     |
| 3     | Explain the general framework for analyzing the efficiency of algorithm                                                                                                                                      | 16      | CO2  | BTL4  | Analyze    |
| 4     | Explain in detail how Big Oh notation used to compare and rank such orders of growth, this notation.                                                                                                         | 16      | CO2  | BTL4  | Analyze    |
| 5     | How do you evaluate the performance of the algorithms?                                                                                                                                                       | 16      | CO2  | BTL3  | Apply      |
| 6     | Explain in detail how Omega notation used to compare and rank such orders of growth, this notation $\Omega(big omega)$                                                                                       | 16      | CO2  | BTL4  | Analyze    |
| 7     | Explain in detail how Theta notation used to compare and rank such orders of growth, this notation $\Theta$ (big theta)                                                                                      | 16      | CO2  | BTL4  | Analyze    |
| 8     | <ul><li>(i) Distinguish between Big Oh, Theta and Omega notation.</li><li>(ii) Analyze the best, worst and average case analysis for linear search.</li></ul>                                                | 8<br>8  | CO2  | BTL4  | Analyze    |
| 9     | Illustrate how Time Complexity is calculated. Give an example                                                                                                                                                | 16      | CO2  | BTL3  | Apply      |
| 10    | Illustrate two kinds of efficiency in detail with an example.                                                                                                                                                | 16      | CO2  | BTL3  | Apply      |
| 11    | Illustrate Iterative Method to solve recurrences in detail with an example.                                                                                                                                  | 16      | CO2  | BTL3  | Apply      |
| 12    | <ul> <li>(i)Explain Backward Substitution method to solve recurrences in detail with an example.</li> <li>(ii)Explain Forward Substitution method to solve recurrences in detail with an example.</li> </ul> | 8<br>8  | CO2  | BTL4  | Analyze    |
| 13    | Explain Recursion Tree Method to solve recurrences in detail with an example.                                                                                                                                | 16      | CO2  | BTL4  | Analyze    |

| 14 | Explain Recursion Tree Method to solve recurrences in detail with an example.                                                                                                                     | 16      | CO2 | BTL4 | Analyze |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----|------|---------|
| 15 | Explain various techniques to solve recurrences.                                                                                                                                                  | 16      | CO2 | BTL4 | Analyze |
| 16 | <ul> <li>i. Explain how analysis of linear search is done with a suitable illustration.</li> <li>ii. Define recurrence equation and explain how solving recurrence equations are done.</li> </ul> | 10<br>6 | CO2 | BTL3 | Apply   |
| 17 | What is meant by recurrence? Give one example to solve recurrence equations.                                                                                                                      | 16      | CO2 | BTL3 | Apply   |

|       | UNIT III - HIERARCHICAL DATA STRUCTUR                                                                                                                                                                          | ES & H      | ASHING     | Ţ          |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------|------------|
|       | Trees: Preliminaries – Implementation of Trees – Tree Traversals with<br>Implementation – Expression Trees – Search Tree ADT – Binary Sea<br>- Fundamentals of Hashing – Hash Function – Separate Chaining – O | rch Tree    | s – Applie | •          |
|       | PART-A                                                                                                                                                                                                         |             |            |            |
| Q.No. | Question                                                                                                                                                                                                       | CO's        | Level      | Competence |
| 1     | What is tree traversal?                                                                                                                                                                                        | CO3         | BTL 2      | Understand |
| 2     | Mention the type of traversals. <b>SRM</b>                                                                                                                                                                     | CO3         | BTL 2      | Understand |
| 3     | Define a binary tree. Give an example.                                                                                                                                                                         | CO3         | BTL 1      | Remember   |
| 4     | Create an expression tree for the expression. 4+((7+9) *2).                                                                                                                                                    | <b>C</b> O3 | BTL 2      | Understand |
| 5     | Differentiate AVL tree and Binary search tree.                                                                                                                                                                 | CO3         | BTL 1      | Remember   |
| 6     | Give the various types of rotations in AVL tree during the insertion of a node?                                                                                                                                | CO3         | BTL 1      | Remember   |
| 7     | For the given tree<br>i. List the siblings for node E<br>ii. Compute the height.<br>B<br>C<br>B<br>C<br>F<br>K<br>K                                                                                            | CO3         | BTL 2      | Understand |
| 8     | List the steps in deleting a node from a binary search tree.                                                                                                                                                   | CO3         | BTL 1      | Remember   |
| 9     | Define the balance factor of AVL Tree.                                                                                                                                                                         | CO3         | BTL 1      | Remember   |

| 10 | Define Separate Chaining.                                                                                        | CO3 | BTL 2 | Understand |
|----|------------------------------------------------------------------------------------------------------------------|-----|-------|------------|
| 11 | Define an expression tree. Give an example of it.                                                                | CO3 | BTL 1 | Remember   |
| 12 | Define AVL Tree.                                                                                                 | CO3 | BTL 1 | Remember   |
| 13 | Identify the properties of Binary Search Tree.                                                                   | CO3 | BTL 1 | Remember   |
| 14 | Identify the type of traversal that gives the data in ascending order.                                           | CO3 | BTL2  | Understand |
| 15 | Identify the properties of AVL Tree.                                                                             | CO3 | BTL2  | Understand |
| 16 | List out the various operations that can be performed on Binary<br>Search Tree to make it a height balanced one. | CO3 | BTL 1 | Remember   |
| 17 | Identify the three cases for deleting a node from a binary search tree.                                          | CO3 | BTL 1 | Remember   |
| 18 | Define leaves in a tree.                                                                                         | CO3 | BTL1  | Remember   |
| 19 | What do you mean by level of the tree?                                                                           | CO3 | BTL2  | Understand |
| 20 | Identify the properties of a binary tree.                                                                        | CO3 | BTL1  | Remember   |
| 21 | Define Hashing.                                                                                                  | CO3 | BTL2  | Understand |
| 22 | List the Different ways of Open Addressing.                                                                      | CO3 | BTL1  | Remember   |
| 23 | List out the applications of Trees.                                                                              | CO3 | BTL2  | Understand |
| 24 | What do you mean by Heap?                                                                                        | CO3 | BTL1  | Remember   |
|    | PART-B                                                                                                           | Ш   |       |            |

| Q.No | Question                                                                                                                                                                         | Marks   | CO's | Level | Competence |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------|-------|------------|
| 1    | Illustrate an algorithm for traversals of a binary tree with an example.                                                                                                         | 16      | CO3  | BTL3  | Apply      |
| 2    | <ul><li>Explain the following operations on a binary search tree with suitable algorithm:</li><li>i. Find a node</li><li>ii. Find minimum and maximum elements of BST.</li></ul> | 6<br>10 | CO3  | BTL3  | Apply      |
| 3    | Write an algorithm for inserting nodes in a binary search tree and explain with an example.                                                                                      | 16      | CO3  | BTL3  | Apply      |
| 4    | Describe the various operations that can be performed on a Binary<br>Search Tree with example for each operation.                                                                | 16      | CO3  | BTL3  | Apply      |
| 5    | <ul><li>i. Discuss in detail the various methods in which a binary tree<br/>can be represented.</li><li>ii. Discuss the advantage and disadvantage of each method.</li></ul>     | 10<br>6 | CO3  | BTL4  | Analyze    |

|    |                                                                                                                                                                                                                              |            |     | r – r |          |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----|-------|----------|
| 6  | <ul> <li>i. Create a binary search tree using the following data elements 45, 39, 56, 12, 34, 78, 32, 10, 89, 54, 67, 81</li> <li>ii. Explain the steps to convert general tree to binary tree?</li> </ul>                   | 10<br>6    | CO3 | BTL5  | Evaluate |
| 7  | Describe the three cases for deleting a node from a binary search tree with an example for each case.                                                                                                                        | 16         | CO3 | BTL5  | Evaluate |
| 8  | i. Discuss whether the following tree is AVL tree or<br>not. If yes explain, how is it balanced and if not<br>balance the tree                                                                                               | 10         |     | BTL6  | Create   |
|    | i. Explain how deletion can take place in AVL trees with                                                                                                                                                                     | 6          | CO3 |       |          |
|    | suitable algorithm.                                                                                                                                                                                                          | 0          |     |       |          |
| 9  | <ul> <li>i. What are AVL trees? Describe the different rotations defined for AVL tree.</li> <li>ii. Insert the following elements step by step in sequence into an empty AVL tree 63, 9, 19, 27, 18, 108, 99, 81.</li> </ul> | 8 <b>G</b> | CO3 | BTL5  | Evaluate |
| 10 | Develop a routine for post order traversal. Is it possible to find<br>minimum and maximum value in the binary search tree using<br>traversals? Discuss in detail with an example.                                            | 16         | CO3 | BTL3  | Apply    |
| 11 | Write an algorithm for deleting a node in a binary search tree considering the different cases of a node to be deleted.                                                                                                      | 16         | CO3 | BTL3  | Apply    |
| 12 | Explain the construction of expression tree with example. Give the applications of trees.                                                                                                                                    | 16         | CO3 | BTL4  | Analyze  |
| 13 | Explain Deletion in Binary tree by merging and copying.                                                                                                                                                                      | 16         | CO3 | BTL3  | Apply    |
| 14 | <ul><li>i. Explain how to delete an element from the binary search tree.</li><li>ii. Write recursive algorithm for pre order traversal.</li></ul>                                                                            | 8<br>8     | CO3 | BTL3  | Apply    |
| 15 | Construct an expression tree for the expression $(a+b*c) + ((d*e+f)*g)$ . Give the outputs when you apply inorder, preorder and postorder traversals.                                                                        | 16         | CO3 | BTL3  | Apply    |
| 16 | Show each step of hash table entries for the given data set using linear probing 12,45,67,88,27,78,20,62,36,55 (size=10)                                                                                                     | 16         | CO3 | BTL6  | Create   |
| 17 | Apply quadratic hashing to fill the hash table of size 11 elements 20,5,10,22,33,40,50,30,51,31                                                                                                                              | 16         | CO3 | BTL6  | Create   |

|        | UNIT IV - SORTING AND GRAPHS                                                                                                                                                                                                                       |      |       |            |  |  |  |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------|------------|--|--|--|
| -<br>- | Sorting Algorithms: Insertion Sort, Quick Sort, Heap Sort - Graphs: Representation of Graphs – Graph<br>Traversals – Topological Sort – Shortest Path Algorithms: Dijkstra's Algorithm – Minimum Spanning<br>Tree: Prim's and Kruskal's Algorithm. |      |       |            |  |  |  |
|        | PART-A                                                                                                                                                                                                                                             |      |       |            |  |  |  |
| Q.No.  | Question                                                                                                                                                                                                                                           | CO's | Level | Competence |  |  |  |
| 1      | Define Heap sort?                                                                                                                                                                                                                                  | CO4  | BTL 1 | Remember   |  |  |  |
| 2      | Define Quick Sort.                                                                                                                                                                                                                                 | CO4  | BTL 2 | Understand |  |  |  |
| 3      | What is the difference between quicksort and merge sort?                                                                                                                                                                                           | CO4  | BTL 2 | Understand |  |  |  |
| 4      | Define graph.                                                                                                                                                                                                                                      | CO4  | BTL 2 | Understand |  |  |  |
| 5      | Create an undirected graph and its adjacency matrix for the following specification of a graph G.<br>V(G)=1,2,3,4; E(G) = { $(1,2),(1,3),(3,3),3,4),(4,1)$ }                                                                                       | CO4  | BTL 2 | Understand |  |  |  |
| 6      | What is meant by bi-connected graph?                                                                                                                                                                                                               | CO4  | BTL 1 | Remember   |  |  |  |
| 7      | Give the purpose of Dijkstra's algorithm.                                                                                                                                                                                                          | CO4  | BTL 2 | Understand |  |  |  |
| 8      | Differentiate cyclic and acyclic graph                                                                                                                                                                                                             | CO4  | BTL 1 | Remember   |  |  |  |
| 9      | Classify strongly connected and weakly connected graph.                                                                                                                                                                                            | CO4  | BTL 1 | Remember   |  |  |  |
| 10     | What is an articulation point? Give example.                                                                                                                                                                                                       | CO4  | BTL 1 | Remember   |  |  |  |
| 11     | What are the representations of the graph?                                                                                                                                                                                                         | CO4  | BTL 1 | Remember   |  |  |  |
| 12     | Define minimum spanning tree. Give an example                                                                                                                                                                                                      | CO4  | BTL 1 | Remember   |  |  |  |
| 13     | State the principle of Topological sorting.                                                                                                                                                                                                        | CO4  | BTL 1 | Remember   |  |  |  |
| 14     | Explain procedure for Depth first search algorithm.                                                                                                                                                                                                | CO4  | BTL 2 | Understand |  |  |  |
| 15     | What is Dynamic programming technique? Explain it with an example.                                                                                                                                                                                 | CO4  | BTL 2 | Understand |  |  |  |
| 16     | Prove that the number of edges in a complete graph of n vertices in $n (n-1)/2$ .                                                                                                                                                                  | CO4  | BTL 2 | Understand |  |  |  |
| 17     | Assess the minimum number spanning tree possible for a complete graph with n vertices.                                                                                                                                                             | CO4  | BTL 2 | Understand |  |  |  |
| 18     | Give two applications of graphs.                                                                                                                                                                                                                   | CO4  | BTL 2 | Understand |  |  |  |
| 19     | What is visiting and traversing in a graph?                                                                                                                                                                                                        | CO4  | BTL 1 | Remember   |  |  |  |
| 20     | When is a graph said to be weakly connected?                                                                                                                                                                                                       | CO4  | BTL 2 | Understand |  |  |  |
| 21     | What is Greedy method? Give an example.                                                                                                                                                                                                            | CO4  | BTL 1 | Remember   |  |  |  |
| 22     | What is in-degree of a graph. Give suitable example.                                                                                                                                                                                               | CO4  | BTL 2 | Understand |  |  |  |
| 23     | What is meant by out-degree of a graph?                                                                                                                                                                                                            | CO4  | BTL 1 | Remember   |  |  |  |

| 24 What are the two basic parts of Heap sort? | CO4 | BTL2 | Understand |
|-----------------------------------------------|-----|------|------------|
|-----------------------------------------------|-----|------|------------|

| Q.No. | Questions                                                                                                                                                                 | Marks  | CO's | Level | Competence |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------|-------|------------|
| 1     | Explain in detail in merge sort give an example                                                                                                                           | 16     | CO4  | BTL4  | Analyze    |
| 2     | Distinguish between Quick sort and Merge sort, and arrange the following numbers in increasing order using merge sort. (18, 29, 68, 32, 43, 37, 87, 24, 47, 50)           | 16     | CO4  | BTL3  | Apply      |
| 3     | Sort the following set of elements using merge sort: 12, 24, 8, 71, 4, 23, 6, 89, and 56.                                                                                 | 16     | CO4  | BTL3  | Apply      |
| 4     | Explain the concept of heap sort with example?                                                                                                                            | 16     | CO4  | BTL4  | Analyze    |
| 5     | Describe in detail about the following representations of a graph.<br>i. Adjacency Matrix<br>ii. Adjacency List                                                           | 8<br>8 | CO4  | BTL5  | Evaluate   |
| 6     | <ul> <li>i) Consider the given directed acyclic graph D. Sort the nodes D by applying topological sort on 'D'.</li> <li>A B B B B B B B B B B B B B B B B B B B</li></ul> | 8      | CO4  | BTL6  | Create     |
| 7     | Describe an appropriate algorithm to find the shortest path from<br>'A' to every other node of A for the given graph.                                                     | 16     | CO4  | BTL4  | Analyze    |

|    | $\sim$                                                                  |    |         |        |           |
|----|-------------------------------------------------------------------------|----|---------|--------|-----------|
|    |                                                                         |    |         |        |           |
|    | 3                                                                       |    |         |        |           |
|    |                                                                         |    |         |        |           |
|    | (B)                                                                     |    |         |        |           |
|    | 5 7                                                                     |    |         |        |           |
|    | et t                                                                    |    |         |        |           |
|    | ( c )→( ⊑ )                                                             |    |         |        |           |
|    | 6                                                                       |    |         |        |           |
|    | i. Examine topological sorting of a graph G with suitable               | 8  |         |        |           |
| 8  | example.                                                                | 8  | CO4     | BTL3   | Apply     |
|    | i. Explain Dynamic programming with suitable examples.                  | 0  |         |        |           |
| 9  | Differentiate depth-first search and breadth-first search traversal     | 16 | CO4     | BTL3   | Apply     |
|    | of a graph with suitable examples.                                      |    |         |        | 11.5      |
|    | i. Explain with algorithm, How DFS be performed on an undirected graph. | 10 |         |        |           |
| 10 | ii. Show the algorithm for finding connected components of an           | 10 | CO4     | BTL4   | Analyze   |
| 10 | undirected graph using DFS, and derive the time complexity              | 6  | COT     | DILT   | 7 mary 20 |
|    | of the algorithm.                                                       | 0  |         |        |           |
|    | Discuss an algorithm for Breadth first Search on a graph.               | 10 | <i></i> |        |           |
| 11 | Give an example based on the algorithm.                                 | 6  | CO4     | BTL4   | Analyze   |
|    | (0) Apply Aruskal's algorithm to find a minimum spanning tree of the    | -  |         |        |           |
|    | following graph. (16)                                                   | -  |         |        |           |
| 10 | 010                                                                     | m  | 004     |        |           |
| 12 | 3/4/20                                                                  | 16 | CO4     | BTL4   | Analyze   |
|    | d 3 d 4 b                                                               | П  |         |        |           |
|    |                                                                         |    |         |        |           |
| 13 | Develop an algorithm to compute the shortest path using Dijkstra's      | 16 | CO4     |        | Create    |
| 15 | algorithm. Validate the algorithm with suitable example.                | 16 | CO4     | BTL6   | Create    |
| 14 | Explain the depth first approach of finding articulation points in a    | 16 | CO4     | BTL6   | Create    |
| 14 | connected graph with necessary algorithm.                               |    | 04      | DILO   | Cicaic    |
| 15 | i. Write short notes on Bi-connectivity.                                | 8  | CO4     | BTL3   | Apply     |
|    | ii. Express different types of graphs with example.                     | 8  |         | 2120   |           |
| 16 | Explain the various applications of graphs.                             | 16 | CO4     | BTL3   | Apply     |
|    | Using Dijkstra's algorithm to find the shortest path from the           |    |         |        |           |
|    | source node A.                                                          |    |         |        |           |
|    | $\sim$                                                                  |    |         |        |           |
|    |                                                                         |    |         |        |           |
|    |                                                                         |    |         |        |           |
| 17 |                                                                         | 16 | CO4     | Create | BTL6      |
|    | (H) 2 (C)                                                               |    |         |        |           |
|    |                                                                         |    |         |        |           |
|    | 5 6 1 2                                                                 |    |         |        |           |
|    | E $3$ $D$                                                               |    |         |        |           |
|    |                                                                         |    |         |        |           |

|       | UNIT V - ALGORITHM DESIGN TECHNIQUES                                                                                                                                                              |      |       |            |  |  |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------|------------|--|--|
|       | Greedy Algorithms: Huffman Codes – Divide and Conquer: Merge Sort – Dynamic Programming: Usin<br>a Table instead of Recursion – Ordering Matrix Multiplications – Introduction to NP Completeness |      |       |            |  |  |
|       | PART-A                                                                                                                                                                                            |      |       |            |  |  |
| Q.No. | Question                                                                                                                                                                                          | CO's | Level | Competence |  |  |
| 1     | Mention different algorithm design techniques.                                                                                                                                                    | CO5  | BTL 1 | Remember   |  |  |
| 2     | Mention the two properties of sorting algorithms.                                                                                                                                                 | CO5  | BTL 2 | Understand |  |  |
| 3     | State greedy technique.                                                                                                                                                                           | CO5  | BTL 2 | Understand |  |  |
| 4     | Define dynamic programming.                                                                                                                                                                       | CO5  | BTL 2 | Understand |  |  |
| 5     | Define divide and conquer design technique                                                                                                                                                        | CO5  | BTL 2 | Understand |  |  |
| 6     | State the Principle of Optimality.                                                                                                                                                                | CO5  | BTL 1 | Remember   |  |  |
| 7     | What is Huffman trees?                                                                                                                                                                            | CO5  | BTL 2 | Understand |  |  |
| 8     | List the advantage of Huffman's encoding?                                                                                                                                                         | CO5  | BTL 1 | Remember   |  |  |
| 9     | What do you mean by Huffman code?                                                                                                                                                                 | CO5  | BTL 1 | Remember   |  |  |
| 10    | What is greedy method?                                                                                                                                                                            | CO5  | BTL 1 | Remember   |  |  |
| 11    | What do you mean by row major and column major?                                                                                                                                                   | CO5  | BTL 1 | Remember   |  |  |
| 12    | Show the general procedure of dynamic programming.                                                                                                                                                | CO5  | BTL 1 | Remember   |  |  |
| 13    | Define Kruskal Algorithm.                                                                                                                                                                         | CO5  | BTL 1 | Remember   |  |  |
| 14    | List the features of dynamic programming?                                                                                                                                                         | CO5  | BTL 2 | Understand |  |  |
| 15    | How Dynamic Programming is used to solve Knapsack Problem?                                                                                                                                        | CO5  | BTL 2 | Understand |  |  |
| 16    | List two major parts in Huffman Coding.                                                                                                                                                           | CO5  | BTL 2 | Understand |  |  |
| 17    | Define NP Problem.                                                                                                                                                                                | CO5  | BTL 2 | Understand |  |  |
| 18    | Differentiate P and NP.                                                                                                                                                                           | CO5  | BTL 2 | Understand |  |  |
| 19    | How NP-hard problems are different from NP-Complete?                                                                                                                                              | CO5  | BTL 1 | Remember   |  |  |
| 20    | Give some examples of non-polynomial problem.                                                                                                                                                     | CO5  | BTL 2 | Understand |  |  |
| 21    | Give some examples of Polynomial problem.                                                                                                                                                         | CO5  | BTL 1 | Remember   |  |  |
| 22    | Define non-polynomial problem.                                                                                                                                                                    | CO5  | BTL 2 | Understand |  |  |
| 23    | Define Polynomial (P) problem.                                                                                                                                                                    | CO5  | BTL 1 | Remember   |  |  |
| 24    | On what basis problems are classified?                                                                                                                                                            | CO5  | BTL2  | Understand |  |  |

| Q.No. | Question                                                                                                                 | Marks | CO's | Level | Competence |
|-------|--------------------------------------------------------------------------------------------------------------------------|-------|------|-------|------------|
| 1     | Discuss briefly the sequence of steps in designing and analyzing an algorithm.                                           | 16    | CO5  | BTL4  | Analyze    |
| 2     | Explain in detail about divide and conquer approach.                                                                     | 16    | CO5  | BTL4  | Analyze    |
| 3     | Describe in detail about merge sort with an example.                                                                     | 16    | CO5  | BTL4  | Analyze    |
| 4     | Explain in detail about Greedy Algorithms.                                                                               | 16    | CO5  | BTL4  | Analyze    |
| 5     | Explain in detail about Dynamic Programming.                                                                             | 16    | CO5  | BTL4  | Analyze    |
| 6     | Explain Kruskal's Algorithm.                                                                                             | 16    | CO5  | BTL4  | Analyze    |
| 7     | Illustrate Prim's Algorithm in detail with an example.                                                                   | 16    | CO5  | BTL3  | Apply      |
| 8     | Illustrate Greedy Method with an example.                                                                                | 16    | CO5  | BTL3  | Apply      |
| 9     | Explain in detail that what does dynamic programming have in common with divide-and-Conquer?                             | 16    | CO5  | BTL4  | Analyze    |
| 10    | Explain how Floyd's Algorithm works.                                                                                     | 16    | CO5  | BTL4  | Analyze    |
| 11    | Illustrate Huffman code algorithm and derive its complexity.                                                             | 16    | CO5  | BTL3  | Apply      |
| 12    | Outline the Dynamic Programming approach to solve the Optimal Binary Search Tree problem and analyze it time complexity. | 16    | CO5  | BTL4  | Analyze    |
| 13    | Explain in detail two major parts in Huffman Coding.                                                                     | 16    | CO5  | BTL4  | Analyze    |
| 14    | Explain Steps to build Huffman Tree with an example.                                                                     | 16    | CO5  | BTL4  | Analyze    |
| 15    | Explain how Matrix – chain Multiplication problem can be solved using dynamic programming with suitable example.         | 16    | CO5  | BTL4  | Analyze    |
| 16    | Describe in detail about P and NP problems.                                                                              | 16 🗖  | CO5  | BTL4  | Analyze    |
| 17    | Illustrate NP hard problems in detail with an example.                                                                   | 16    | CO5  | BTL3  | Apply      |
|       |                                                                                                                          |       |      |       |            |