
SRM VALLIAMMAI ENGINEERING COLLEGE 
(An Autonomous Institution) 

SRM Nagar, Kattankulathur-603203 
 

 

 

DEPARTMENT 

OF 

MASTER OF COMPUTER APPLICATION 

 
ACADEMIC YEAR: 2024-2025 (ODD SEMESTER) 

 

LAB MANUAL 
 

(REGULATION - 2025) 

 

MC4167 – PYTHON PROGRAMMING LABORATORY 

 

FIRST SEMSTER 

 

MCA – COMPUTER APPLICATIONS 

Prepared By 

 Dr.R.THENMOZHI 

Associate Professor 

Department of Computer Applications 



ii 
 

VISION OF THE DEPARTMENT 

To educate students with conceptual knowledge and technical skills in the field of Computer 

Applications with moral and ethical values to achieve excellence in academic, industry, and research- 

centric environments. 

 

MISSION OF THE DEPARTMENT 

1. To inculcate in students a firm foundation in theory and practice of computer application skillscoupled with the 

thought process for disruptive innovation and research methodologies, to keep pace with emerging 

technologies. 

2. To provide a conducive environment for all academic, administrative, and interdisciplinary research activities 

using state-of-the-art technologies. 

3. To stimulate the growth of graduates and doctorates, who will enter the workforce as productive software 

professionals, researchers, and entrepreneurs with necessary soft skills, and continue higher professional 

education with competence in the global market. 

4. To enable seamless collaboration with the IT industry and Government for consultancy and sponsored research. 

5. To cater, to thecross-cultural, multinational, and demographic diversity of students. 

6. To educate the students on the social, ethical, and moral values needed to make significantcontributions to 

society. 



iii 
 

 
 

INDEX 

E. NO EXPERIMENT NAME Pg.No. 

A PEO,PO 1 

B SYLLABUS 3 

C MAJOR SOFTWARE & HARDWARE 4 

D CO, CO-PO MATRIX 4 

E MODE OF ASSESSMENT 5 

1 Python programming using simple statements and expressions 6 

1a Exchange the values of two variables 6 

1b Circulate the values of n variables 8 

1c Distance between two points 10 

2 Scientific problems using Conditionals and Iterative loops. 12 

2a Fibonacci series 14 

2b Armstrong Number 16 

2c Palindrome 18 

3a Linear search 20 

3b Binary search 22 

4a Selection sort 25 

4b Insertion sort 27 

5a Merge sort 29 

5b Quick Sort 33 

6a Implementing applications using Lists 36 

6b Implementing applications using Tuples. 39 

7 Implementing applications using Sets, Dictionaries. 42 

8 Implementing programs using Functions. 47 

9 Implementing programs using Strings. 49 

10 Implementing programs using written modules and Python Standard Libraries (pandas, 

numpy, Matplotlib, scipy) 
51 

11 Implementing real-time/technical applications using File handling. 55 

12 Implementing real-time/technical applications using Exception handling. 59 

13 Creating and Instantiating classes 63 

14 Topic Beyond Syllabus: Study and Implement Various Data Visualizations  68 

15 Viva Voce Questions 74 



1  

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs) 

 
o To prepare students with a breadth of knowledge to comprehend, analyze, design, and create computing 

solutions to real-life problems and to excel in industry / technical profession. 

o To provide students with a solid foundation in mathematical and computing fundamentals and 

techniques required to solve technology-related problems and to pursue higher studies and research. 

o To inculcate a professional and ethical attitude in students, to enable them to work towards a broad 

social context. 

o To empower students with skills required to work as members and leaders in multi disciplinary teams 

and with continuous learning ability on technology and trends needed for a successful career. 
 

PROGRAMME OUTCOMES (POs) 

After going through the four years of study, Information Technology Graduates will exhibit ability to: 
 

PO # Graduate Attribute Program Outcome 

 

1 

 

Engineering knowledge 

Apply the knowledge of mathematics, science, engineering 

fundamentals, and an engineering specialization for the solution 

of complex engineering problems. 

 

 

2 

 

 

Problem analysis 

Identify, formulate, research literature, and analyze complex 

engineering problems reaching substantiated conclusions using 

first principles of mathematics, natural sciences, and 

engineering sciences. 

 

 

3 

 

Design/development of 

solutions 

Design solutions for complex engineering problems and design 

system components or processes that meet the specified needs 

with appropriate consideration for public health and safety, and 

cultural, societal, and environmental considerations. 

 

4 
Conduct investigations of 

complex problems 

Use research-based knowledge and research methods including 

design of experiments, analysis and interpretation of data, and 

synthesis of the information to provide valid conclusions 

5 Modern tool usage Create, select, and apply appropriate techniques, resources, and 

 . 



2  

  modern engineering and IT tools, including prediction and 

modeling to complex engineering activities, with an 

understanding of the limitations. 

 

 

6 

 

 

The engineer and society 

Apply reasoning informed by the contextual knowledge to assess 

societal, health, safety, legal, and cultural issues and the 

consequent responsibilities relevant to the professional 

engineering practice 

 

7 
Environment and 

sustainability 

Understand the impact of the professional engineering solutions 

in societal and environmental contexts, and demonstrate the 

knowledge of, and need for sustainable development. 

8 Ethics 
Apply ethical principles and commit to professional ethics and 

responsibilities and norms of the engineering practice 

9 Individual and team work 
Function effectively as an individual, and as a member or 

leader in diverse teams, and in multidisciplinary settings 

 

 

 

10 

 

 

Communication 

Communicate effectively on complex engineering activities with 

the engineering community and with the society at large, such as, 

being able to comprehend and write effective reports and design 

documentation, make effective presentations, and 

give and receive clear instructions 

 

 

11 

 

Project management and 

finance 

Demonstrate knowledge and understanding of the engineering 

and management principles and apply these to one’s own work, 

as a member and leader in a team, to manage projects and in 

multidisciplinary environments 

 

12 

 

Life-long learning 

Recognize the need for, and have the preparation and ability to 

engage in independent and life-long learning in the broadest 

context of technological change 
 



3  

MC4167 PYTHON PROGRAMMING LABORATORY L T P C 

0 0 4 2 

LIST OF EXPERIMENTS:  

1.  Python programming using simple statements and expressions (exchange thevalues of 

two variables, circulate the values of n variables, distance between twopoints). 

2. Scientific problems using Conditionals and Iterative loops. 

3. Linear search and Binary search 

4. Selection sort, Insertion sort 

5. Merge sort, Quick Sort 

6. Implementing applications using Lists, Tuples. 

7. Implementing applications using Sets, Dictionaries. 

8. Implementing programs using Functions. 

9. Implementing programs using Strings. 

10. Implementing programs using written modules and Python Standard Libraries (pandas,numpy, 

Matplotlib, scipy) 

11. Implementing real-time/technical applications using File handling. 

12. Implementing real-time/technical applications using Exception handling. 

13. Creating and Instantiating classes 

Total: 60 Periods 

 

 

COURSE OUTCOMES: 

On completion of the laboratory course, the student should be able to 

CO1: Apply the Python language syntax including control statements, loops and 

functions to solve a wide variety of problems in mathematics and science. 

CO2: Use the core data structures like lists, dictionaries, tuples and sets in Python 

to store, process and sort the data 

CO3: Create files and perform read and write operations 

CO4: Illustrate the application of python libraries. 

CO5: Handle exceptions and create classes and objects for any real time applications 



4  

LIST OF EQUIPMENTS FOR A BATCH OF 30 STUDENTS 
 

 

HARDWARE/SOFTWARE REQUIREMENTS 

1: Processors: Intel Atom® processor Intel®Core™i3 processor2: 

Disk space: 1GB. 

3: Operating systems: Windows 7,macOS and Linux 
4:  Python versions:2.7, 3.6, 3.8 

 

 

COURSE OUTCOMES 

 

MC4167.1 Apply the Python language syntax including control statements, 
loops and functions to solve a wide variety of problems in mathematics 
and science. 

MC4167.2 Use the core data structures like lists, dictionaries, tuples and sets in 
Python to store, process and sort the data 

MC4167.3 Create files and perform read and write operations 

MC4167.4 Illustrate the application of python libraries. 

MC4167.5 Handle exceptions and create classes and objects for any real time applications 

 

CO- PO MATRIX 

 

CO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 

MC4167.1 2 1 3 3 2 2 - - - - - - 

MC4167.2 2 1 3 3 2 2 - - - - - - 

MC4167.3 1 1 3 2 2 2 - - - - - - 

MC4167.4 2 1 3 2 2 2 - - - - - - 

MC4167.5 2 1 3 3 2 3 - - - - - - 

Average 1.8 1 3 2.6 2 2.2 - - - - - - 



5  

EVALUATION PROCEDURE FOR EACH EXPERIMENT 
 

 

 

S.No Description Mark 

1. Aim & Pre-Lab discussion 20 

2. Observation 20 

3. Conduction and Execution 30 

4. Output & Result 10 

5. Viva 20 

Total 100 

 

 

 

INTERNAL ASSESSMENT FOR LABORATORY 

 

S.No Description Mark 

1. Conduction & Execution of Experiment 30 

2. Record 10 

3. Model Test 20 

Total 60 



6  

Ex.No:1 

PYTHON PROGRAMMING USING SIMPLE STATEMENTS AND EXPRESSIONS 

Ex.No:1a 

AIM: 

To exchange the given values of two variables using python. 

PRE LAB DISCUSSION: 

An expression is a code construct that is evaluated to a value. A code construct is a piece of code. 

Following are some common expressions: 

 An object or a declared variable, such as: 3, Hi, x, [1, 2, 3]. 

 A computation using operators, such as 3 + 5, x < y < z. 

 A function call, such as len("hello"), math.pow(3, 2). 

 Functions defined inside types are called methods. A method call is an expression.  

 For example: "hello".upper(), [1, 2, 3].pop(). 

 Simple statements  
 assignment statement name = expression 

 return statement: return expression 

 import statement: import module_name 

Compound Statements 

A compound statement contains multiple statements that usually span multiple lines. 

Compound statements are used to control program flow or create new data types like functions 

 and classes. 

ALGORITHM: 

Step 1: Start the program. 

Step 2: Get two integer inputs var1 and var2 from the user using the input() function. 

Step 3: Declare third variable, c. 

Step 4: c=a, a=b, b=c. 

Step 5: Print the output swapped values a and b. 

Step 6: Stop the program. 

 
PROGRAM: 

print("Swapping using temporary variable") 

a = int(input("a = ")) 

b = int(input("b = ")) 

print("Before Swapping") 

print("a = ", a) 

print("b = ", b) 

c = a 

a = b 

b = c 

print("After Swapping") 

print("a = ", a) 

print("b = ", b) 



7  

OUTPUT: 

 

Swapping using temporary variable 

 

a = 10 

 

b = 20 

 

Before Swapping 

 

a = 10 

 

b = 20 

 

After Swapping 

 

a = 20 

 

b = 10 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RESULT 

Thus the program to exchange the given values of two variables using python has been executed 

successfully. 



8  

Ex.No.1b. 

 

Aim: 

 

CIRCULATE THE VALUES OF N VARIABLES 

 

To circulate the given values of n variables using python. 

 

Algorithm: 

Step 1: Start the program. 

Step 2: Get one integer input no_of_terms from the user using the input() function. 

Step 3: Read the value of no_of_terms. 

Step 4: Create a list as list1. 

Step 5: Validate the range of no_of_terms. 

Step 6: Then, get one integer input ele from the user using input() function. 

Step 7: Add a single item to the existing list using the append method. 

Step 8: Print the circulative values. 

Step 9: Stop the program. 

PROGRAM: 

 

#Circulate the values of n variables 

no_of_terms=int(input("Enter number of values : ")) 

list1=[] 

for val in range(0,no_of_terms,1): 

ele=int(input("Enter integer : ")) 

list1.append(ele) 

#Circulate and display values 

print("Circulating the elements of list ",list) 

for val in range(0,no_of_terms,1): 

ele=list1.pop(0) 

list1.append(ele) 

print(list1) 



9  

OUTPUT: 

 

 

Enter number of values : 5 

Enter integer : 8 

Enter integer : 5 

Enter integer : 3 

Enter integer : 6 

Enter integer : 7 

Circulating the elements of list <class 'list'> 

[5, 3, 6, 7, 8] 

[3, 6, 7, 8, 5] 

[6, 7, 8, 5, 3] 

[7, 8, 5, 3, 6] 

[8, 5, 3, 6, 7] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Result: 

Thus the program has been executed successfully circulate the given values of n variables using 

python. 



10  

Ex.No:1c 

CALCULATE DISTANCE BETWEEN TWO POINTS 

 

AIM: 

To calculate distance between two points using python 

 

ALGORITHM: 

 

Step 1: Start the program. 

Step 2: Get two integer inputs x1 and x2 for coordinates 1 from the user using the input() 

function. 

Step 3: Then, Get two integer inputs y1 and y2 for coordinates 2. 

Step 4: Calculate using the two points (x1,y1) and (x2,y2),the distance between these points 

is given by the formula. 

Step 5: (((x2-x1)**2+((y2-1)**2))**0.5. Step 

Step 6: Print the distance between values. Step 

Step 7: Stop the program. 

PROGRAM: 

#Distance between two points 

print("Enter coordinates for Point 1 : ") 

x1=int(input("enter x1 : ")) 

x2=int(input("enter x2 : ")) 

print("Enter coordinates for Point 2 : ") 

y1=int(input("enter y1 : ")) 

y2=int(input("enter y2 : ")) 

result= ((((x2 - x1 )**2) + ((y2-y1)**2) )**0.5) 

print("distance  between",(x1,x2),"and",(y1,y2),"is  :  ",result) 



11  

OUTPUT 

Enter coordinates for Point 1 : 
enter x1 : 100 

enter x2 : 200 

Enter coordinates for Point 2 : 

enter y1 : 500 

enter y2 : 500 

distance between (100, 200) and (500, 500) is : 100.0 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RESULT 

Thus the program to calculate distance between two points using python has been executed successfully 



12  

Ex.No:2 SCIENTIFIC PROBLEMS USING CONDITIONALS AND ITERATIVE LOOPS 

AIM : 

To write a Python Program for scientific problems using conditionals and iterative loops 

 

PRE LAB DISCUSSION 

Conditional statements  

if, elif, and else. 

Basic if Statement 

x = 10 

if x > 5: 

print("x is greater than 5") 

 

 

if-else Statement 

x = 4 

if x > 5: 

print("x is greater than 5") 

else: 

print("x is 5 or less") 

 

 

if-elif-else Statement 

x = 10 

if x > 10: 

print("x is greater than 10") 

elif x == 10: 

print("x is exactly 10") 

else: 

print("x is less than 10") 

 

 

2. Iterative Loops 

for loops and while loops 

for Loop 

case:1 

fruits = ['apple', 'banana', 'cherry'] 

for fruit in fruits: 



13  

print(fruit) 

case:2 

for i in range(5): 

print(i) 

while Loop 

count = 0 

while count < 5: 

print(count) 

count += 1 

# Increment the count to eventually end the loop 

Using if Inside a for Loop 

numbers = [1, 2, 3, 4, 5] 

for number in numbers: 

if number % 2 == 0: 

print(f"{number} is even") 

else: 

print(f"{number} is odd") 

 

 

Using break and continue 

# Using break 

for i in range(10): 

if i == 5: 

break 

print(i) 

# Using continue 

for i in range(10): 

if i % 2 == 0: 

continue 

print(i) 

# Prints only odd numbers 



14  

Ex.No:2a FIBONACCI SERIES 

 
AIM: 

Write a python program to generate Fibonacci series using function. 

 

PRE LAB DISCUSSION: 

Fibonacci Sequence is a series of numbers starting with 0 and 1 in which each number, is generated by 

adding the two preceding numbers. It is a special sequence of numbers that starts from 0 and 1 and then the next 

terms are the sum of the previous terms and they go up to infinite terms. 

ALGORITHM: 

 Step1:Start 

 Step2:Get the number of terms 
Step3: Check if the number of terms is valid 

Step4:If there is only one term, return n1 

Step5:If it not generate the fibonacci sequence upto n terms 

Step6:End 

PROGRAM: 

nterms = int(input("How many terms? ")) 

n1, n2 = 0, 1 

count = 0 

if nterms <= 0: 

print("Please enter a positive integer") 

elif nterms == 1: 

print("Fibonacci sequence upto",nterms,":") 

print(n1) 

else: 

print("Fibonacci sequence:") 

while count < nterms: 

print(n1) 

nth = n1 + n2 

# update values 

n1 = n2 

n2 = nth 

count += 1 

https://www.geeksforgeeks.org/numbers


15  

OUTPUT: 

 

How many terms? 5 

Fibonacci sequence: 

0 

 

1 

 

1 

 

2 

 

3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
RESULT: 

Thus the program is executed to find the Fibonacci series of a given number and the output is obtained. 



 

16 

Ex.No:2b AMSTRONG NUMBER 

AIM : 
To write a Python program to find the Armstrong number. 

 

PRELAB DISCUSSION: 

Given a number x, determine whether the given number is Armstrong number or not. A positive integer 

of n digits is called an Armstrong number of order n (order is number of digits) if. 

abcd... = pow(a,n) + pow(b,n) + pow(c,n) + pow(d,n) + .... 

ALGORITHM: 

Step1:Start 

Step2:Define Function to calculate x raised to the power y 

Step3: Calculate order of the number 

Step4:Then add the number with the sum 

Step5:Define the function isArmstrong() to check the given is armstrong number or not. 

Step6:If it the digit is a armstrong number 

Step6:If it is not the digit is not a Armstrong number. 

PROGRAM/SOURCE CODE: 

def power(x, y): 

if y == 0: 

return 1 

if y % 2 == 0: 

return power(x, y // 2) * power(x, y // 2) 

return x * power(x, y // 2) * power(x, y // 2) 

def order(x): 

n = 0 

while (x != 0): 

n = n + 1 

x = x // 10 

return n 

def isArmstrong(x): 

n = order(x) 

temp = x 

sum1 = 0 



17  

while (temp != 0): 

r = temp % 10 

sum1 = sum1 + power(r, n) 

temp = temp // 10 

return (sum1 == x) 

x = 153 

print(isArmstrong(x)) 

x = 1253 

True 

False 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
RESULT: 

Thus the program is executed to find the given number is Armstrong number or not and the output is 

obtained. 

print(isArmstrong(x)) 
 

 

 

 

 

 

 

 

OUTPUT: 



18  

Ex.No:2c PALINDROME 

 

AIM: 

Write a Python program to reverse the digits of a given number and add them to the 

original. Repeat this procedure if the sum is not a palindrome. 

 

PRELAB DISCUSSION: 
A palindrome is a word, number, or other sequence of characters which reads the same 

backward as forward, such as madam or race car. 

ALGORITHM: 

 

Step1:Start 
 

def rev_number(n): 

 s = 0 

while True: 

  k = str(n) 

if k == k[::-1]: 

break 

else: 

 m = int(k[::-1]) 

 n += m 

  s += 1 

return n  

rev=int(input(“enter num:”)) 

print(rev_number(rev)) 

Step2:Define the function 

Step3:Check the position of the digits 

Step4:If the end of the string Matches with the first string then given digit is a palindrome 

Step5:If it not matches the digit is not a palindrome 

Step5:End 

 

PROGRAM: 



19  

OUTPUT: 

Enter num: 145 

Pallindrome number is 

686 

Enter num: 144 

Pallindrome number is 

585 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RESULT: 

Thus the program is executed to find the palindrome of a given number and the output is obtained 



20  

Ex.No:3a LINEAR SEARCH 

AIM : 

To write a python Program to perform linear search 

       

PRELAB DISCUSSION: 

 Linear search is a sequential searching algorithm where we start from one end and check every 

element of the list until the desired element is found. It is the simplest searching algorithm. 

 
ALGORITHM: 

 

Step 1: Start. 

Step 2: Read the number of element in the list. 

Step 3: Read the number until loop n -1. 

Step 4: Then Append the all element in list 

Step 5: Go to STEP -3 upto n -1. 

Step 6 : Read the searching element from the user 

Step 7 : Assign to FALSE flag value 

Step 8 : Search the element with using for loop until length of list 

Step 9 : If value is found assign the flag value is true 

Step10 : Then print the output of founded value an d position. 

Step 11 : If value is not found then go to next step 

Step 12 : Print the not found statement 

PROGRAM : 

 

a=[ ] 

n=int(input("Enter number of 

elements:")) for i in range(1,n+1): 

b=int(input("Enter element:")) 

a.append(b) 

x = int(input("Enter number to search: ")) 

found = False 

for i in range(len(a)): 

if(a[i] = = x): 

found = True 

print("%d found at%dthposition"%(x,i)) 

break 

if (found==False): 

print("%d is not in list"%x) 

 

 



21  

OUTPUT 1: 

 

Enter number of elements:5 

Enter element:88 

Enter element:11 

Enter element:64 

Enter element:23 

Enter element:89 

Enter number to search: 11 

11 found at 1th position 

 

OUTPUT 2: 

Enter number of elements:5 

Enter element:47 

Enter element:99 

Enter element:21 

Enter element:35 

Enter element:61 

Enter number to search: 50 

50 is not in list 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RESULT: 

 

Thus the program to perform linear Search is executed and the output is obtained. 



22  

Ex.No. 3b. BINARY SEARCH 

AIM: 

To write a python program to perform the binary search. 

 

PRELAB DISCUSSION: 
 The divide and conquer approach technique is followed by the recursive method. In this method, a 
function is called itself again and again until it found an element in the list. 
A set of statements is repeated multiple times to find an element's index position in the iterative method. 
The while loop is used for accomplish this task. 
Binary search is more effective than the linear search because we don't need to search each list index. The 
list must be sorted to achieve the binary search algorithm. 

 

ALGORITHM: 

 

Step:1 - mid = (starting index + last index) / 2 

Step:2 - If starting index > last index 

Then, Print "Element not found" 

Exit 

Else if element >arr[mid] 

Then, starting index = mid + 1 

Go to Step:1 

Else if element <arr[mid] 

 

Then,  

last index = mid-1  

Go to Step:2 

Else: 

 

{ means element == arr[mid] } 

Print "Element Presented at position" + mid 

Exit 

 

PROGRAM : 

 

def Binary_search(arr, start_index, last_index, element): 

while(start_index<=last_index): 

mid=int(start_index+last_index)/2) 

if(element>arr[mid]): 



23  

start_index=mid+1 

elif(element<arr[mid]): 

last_index=mid-1 

elif(element==arr[mid]): 

return mid 

else 

return -1 

arr=[] 

n=input(“enter no of elements:”)) 

for i in range(1,n+1): 

b=int(input(“enter element”)) 

arr.append(b) 

print(arr) 

element=int(input(“enter element to be searched”)) 

start_index=0 

last_index=len(arr)-1 

found = Binary_search(arr, start_index, last_index, element) 

if (found = = -1): 

print ("element not present in array") 

else 

print(“element is present at index”, found) 
 

 

 

 

OUTPUT 1: 

Enter number of elements:8 

Enter element:11 

Enter element:33 

Enter element:44 

Enter element:56 

Enter element:63 

Enter element:77 



24  

Enter element:88 

Enter element:90 

[11, 33, 44, 56, 63, 77, 88, 90] 

Enter the element to be searched 

63 element is present at index 4 

 

OUTPUT 2: 

Enter number of elements:7 

Enter element:11 

Enter element:15 

Enter element:20 

Enter element:25 

Enter element:30 

Enter element:40 

Enter element:50 

[11, 15, 20, 25, 30, 40, 50] Enter 

the element to be searched 22 

element not present in array 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RESULT: 

 

Thus the program to perform Binary Search is executed and the output is obtained. 



25  

Ex.No.4a SELECTION SORT 

 

AIM: 

To study and Implement Selection sort using python. 

PRE LAB DISCUSSION 

The provided Python code demonstrates the Selection Sort algorithm. Selection Sort has a time 

complexity of O(n^2). In each iteration, the code finds the minimum element’s index in the 

unsorted portion of the array and swaps it with the current index’s element. This gradually sorts 

the array from left to right. The example initializes an array, applies the selectionSort function to 

sort it, and then prints the sorted array in ascending order. The sorted array is obtained by 

repeatedly finding the smallest element in the unsorted portion and placing it in its correct position, 

resulting in an ordered array 

ALGORITHM: 

1. Start 

2. Get the length of the array. 

3. length = len(array) → 6 

4. First, we set the first element as minimum element. 

5. Now compare the minimum with the second element. If the second element is smaller than 

the first, we assign it as a minimum. 

6. After each iteration, minimum element is swapped in front of the unsorted array. 

7. The second to third steps are repeated until we get the sorted array. 

8. Stop 

 

 

PROGRAM: 

 

# Selection sort in Python 

# time complexity O(n*n) 

#sorting by finding min_index 

def selectionSort(array, size): 

 

for ind in range(size): 

min_index = ind 



26  

for j in range(ind + 1, size): 

# select the minimum element in every iteration 

if array[j] < array[min_index]: 

min_index = j 

# swapping the elements to sort the array 

(array[ind], array[min_index]) = (array[min_index], array[ind]) 

 

arr = [-2, 45, 0, 11, -9,88,-97,-202,747] 

size = len(arr) 

selectionSort(arr, size) 

print('The array after sorting in Ascending Order by selection sort is:') 

print(arr) 

 

OUTPUT 
 

 

The array after sorting in Ascending Order by selection sort is: 

 

[-202, -97, -9, -2, 0, 11, 45, 88, 747] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RESULT: 

Thus the python program is implemented by selection sort to sort the given array. 



27  

Ex.No.4b INSERTION SORT 

AIM: 

 
To perform sorting using Insertion sort 

 

PRE LAB DISCUSSION 

 

The insertion Sort function takes an array arr as input. It first calculates the length of the array (n). 

If the length is 0 or 1, the function returns immediately as an array with 0 or 1 element is considered 

already sorted. 

For arrays with more than one element, the function proceeds to iterate over the array starting from 

the second element. It takes the current element (referred to as the “key”) and compares it with the 

elements in the sorted portion of the array that precede it. If the key is smaller than an element in 

the sorted portion, the function shifts that element to the right, creating space for the key.  

. 

ALGORITHM: 

 

needed to place it in the correct position among the sorted elements. 

6. Repeat until the entire array is sorted. 

7. Stop 

1. Start 

2. We start with second element of the array as first element in the array is assumed to be 

sorted. 

3. Compare second element with the first element and check if the second element is smaller 

then swap them. 

4. Move to the third element and compare it with the second element, then the first element 

and swap as necessary to put it in the correct position among the first three elements. 

5. Continue this process, comparing each element with the ones before it and swapping as 



28  

PROGRAM: 

def insertionSort(arr): 

n = len(arr) # Get the length of the array 

if n <= 1: 

return # If the array has 0 or 1 element, it is already sorted, so return 

for i in range(1, n): # Iterate over the array starting from the second element 

key = arr[i] # Store the current element as the key to be inserted in the right position 

j = i-1 

while j >= 0 and key < arr[j]: # Move elements greater than key one position ahead 

arr[j+1] = arr[j] # Shift elements to the right 

j -= 1 

arr[j+1] = key # Insert the key in the correct position 

# Sorting the array [12, 11, 13, 5, 6] using insertionSort 

arr = [12, 11, 13, 5, 6] 

insertionSort(arr) 

print('The array after sorting in Ascending Order by insertion sort is:') 

print(arr) 

 

 

 

 

 

 

 

OUTPUT 

 

The array after sorting in Ascending Order by insertion sort is: 

[5, 6, 11, 12, 13] 

 

 

 

 

RESULT : 

Thus the python program to perform sorting using insertion sort technique is executed 

successfully. 



29  

EX. NO: 5a MERGE SORT 

AIM 

To perform sorting of the given data items using merge sort 

 

PRE LAB DISCUSSION 
 

ALGORITHM: 

 
6. Merge function creates two different arrays and copies the left and right halves into these arrays. 

7. Iteration and comparison of both arrays are done. 

8. After merging, the arrays are sorted in ascending order. 

9. Stop 

1. Start 

2. Check if the left index is less than the right index. 

3. Calculate the midpoint of the array if the low index is less than the high index. 

4. Call the mergesort function on the left and right halves of the array. 

5. Merge the two sorted halves using the merge function. 

Merge sort is a sorting algorithm that follows the divide-and-conquer approach. It works by 

recursively dividing the input array into smaller subarrays and sorting those subarrays then merging 

them back together to obtain the sorted array. 

In simple terms, we can say that the process of merge sort is to divide the array into two halves, sort 

each half, and then merge the sorted halves back together. This process is repeated until the entire 

array is sorted. 

https://www.geeksforgeeks.org/introduction-to-divide-and-conquer-algorithm-data-structure-and-algorithm-tutorials/


30  

PROGRAM: 

# Python program for implementation of MergeSort 

# Merges two subarrays of arr[]. 

# First subarray is arr[l..m] 

# Second subarray is arr[m+1..r] 

def merge(arr, l, m, r): 

n1 = m - l + 1 

n2 = r - m 

# create temp arrays 

L = [0] * (n1) 

R = [0] * (n2) 

# Copy data to temp arrays L[] and R[] 

for i in range(0, n1): 

L[i] = arr[l + i] 

for j in range(0, n2): 

R[j] = arr[m + 1 + j] 

# Merge the temp arrays back into arr[l..r] 

i = 0 # Initial index of first subarray 

j = 0 # Initial index of second subarray 

k = l # Initial index of merged subarray 

while i < n1 and j < n2: 

if L[i] <= R[j]: 

arr[k] = L[i] 

i += 1 

else: 

arr[k] = R[j] 

j += 1 

k += 1 

# Copy the remaining elements of L[], if there 

# are any 

while i < n1: 

arr[k] = L[i] 



31  

i += 1 

k += 1 

# Copy the remaining elements of R[], if there 

# are any 

while j < n2: 

arr[k] = R[j] 

j += 1 

k += 1 

# l is for left index and r is right index of the 

# sub-array of arr to be sorted 

def mergeSort(arr, l, r): 

if l < r: 

# Same as (l+r)//2, but avoids overflow for 

# large l and h 

m = l+(r-l)//2 

# Sort first and second halves 

mergeSort(arr, l, m) 

mergeSort(arr, m+1, r) 

merge(arr, l, m, r) 

# Driver code to test above 

arr = [12, 11, 13, 5, 6, 7] 

n = len(arr) 

print("Given array is") 

for i in range(n): 

print("%d" % arr[i],end=" ") 

mergeSort(arr, 0, n-1) 

print("\n\nSorted array is") 

for i in range(n): 

print("%d" % arr[i],end=" ") 



32  

OUTPUT: 

Given array is 12 11 13 5 6 7 

Sorted array is 5 6 7 11 12 13 
 

 

 

RESULT 

Thus the python program to perform sorting using merge sort technique is executed 

successfully. 



33  

EX NO : 5b QUICK SORT 

AIM: 

To sort the given list of data items using quick sort techniques. 

PRE LAB DISCUSSION 

One of the most effective sorting algorithms is Quicksort, which is based on the divide-and- 

conquer strategy. Quicksort makes some average memories complexity of O(n log n) and is 

generally utilized practically speaking. 

ALGORITHM: 

Inputs: 

A: an array of n elements 

lo: the index of the first element of the sub-array to be sorted 

hi: the index of the last element of the sub-array to be sorted 

1. If lo is less than hi, then do the following: 

o Call partition(A, lo, hi) and store the index of the pivot element in p. 

o Recursively call quicksort(A, lo, p-1). 

o Recursively call quicksort(A, p+1, hi). 

Partition Algorithm: 

1. Let pivot be the last element of the sub-array A[lo..hi]. 

2. Let i be the index of the first element of the sub-array. 

3. For each j from lo to hi-1, do the following: 

1. If A[j] <= pivot, then do the following: 

1. Increment i. 

2. Swap A[i] with A[j]. 

4. Swap A[i+1] with A[hi]. 

5. Return i+1. 

PROGRAM: 

# Python program for Quicksort 

def quicksort(arr, lo, hi): 

""" 

Sorts the given array in ascending order using the Quicksort algorithm. 



34  

Parameters: 

arr (list): The array to be sorted 

lo (int): The index of the first element in the sub-array to be sorted 

hi (int): The index of the last element in the sub-array to be sorted 

""" 

if lo < hi: 

# Partition the array and get the index of the pivot element 

p = partition(arr, lo, hi) 

 

# Recursively sort the left and right partitions 

quicksort(arr, lo, p-1) 

quicksort(arr, p+1, hi) 

def partition(arr, lo, hi): 

""" 

Partitions the sub-array by selecting the last element as the pivot, 

and rearranging the array so that all elements to the left of the pivot 

are less than or equal to the pivot, and all elements to the right of the 

pivot are greater than the pivot. 

 

Parameters: 

arr (list): The array to be partitioned 

lo (int): The index of the first element in the sub-array to be partitioned 

hi (int): The index of the last element in the sub-array to be partitioned 

 

Returns: 

int: The index of the pivot element after partitioning 

""" 

# Select the last element as the pivot 

pivot = arr[hi] 

i = lo - 1 

 

# Loop through the sub-array and partition it 



35  

for j in range(lo, hi): 

if arr[j] <= pivot: 

# Move the element to the left partition 

i += 1 

arr[i], arr[j] = arr[j], arr[i] 

# Move the pivot element to its final position in the array 

arr[i+1], arr[hi] = arr[hi], arr[i+1] 

# Return the index of the pivot element 

return i+1 

# Example usage 

arr = [10, 7, 8, 9, 1, 5] 

n = len(arr) 

quicksort(arr, 0, n-1) 

print("The given array before sorting is : [10, 7, 8, 9, 1, 5] ") 

print("Sorted array by quick sort is:", arr) 

 

OUTPUT 

The given array before sorting is : [10, 7, 8, 9, 1, 5] 

Sorted array by quick sort is: [1, 5, 7, 8, 9, 10] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RESULT : 

Thus the python program for sorting the given data items using quick sort is executed 

successfully. 



36  

EX NO: 6a IMPLEMENTING APPLICATIONS USING LISTS 

Aim: 
To write a python program to create, slice, change, delete and index elements using List. 

 

PRE LAB DISCUSSION 
 

specify where to start the slicing, where to end, and specify the step. List slicing returns a new list from the 
 

Lst[ Initial : End : IndexJump ] 
 

ALGORITHM : 

Step 1: Create the List. 

Step 2: Indexing the List using the index operator [ ]. 

Step3: Silicing an element from the List 

Step4: Step 4: Changing an element from the List. 

Step 5: Appending the List. 

Step 6: Removing an element from the List. 

Step 7:Deleting an element from the List. 

PROGRAM: 

print(“list is created in the name:list”) 

list=[‘p’,’e’,’r’,’m’,’i’,’t’] 

print(‘list created”,list) 

print(“list indexing”,list[0]) 

print(“list negative indexing”,list[-1]) 

print(“list slicing”,list[1:4]) 

list=[‘p’,’e’,’r’,’m’,’i’,’t’] 

In Python, list slicing is a common practice and it is the most used technique for programmers to solve 

efficient problems. Consider a Python list, in order to access a range of elements in a list, you need to slice 

a list. One way to do this is to use the simple slicing operator i.e. colon(:). With this operator, one can 

existing list. 

Python List Slicing Syntax 

The format for list slicing is of Python List Slicing is as follows: 

If Lst is a list, then the above expression returns the portion of the list from index Initial to index End, at a 

step size IndexJump. 

https://www.geeksforgeeks.org/python-programming-language/


37  

print("Given list",list) 

list[0]=2 

print("List Changing",list) 

list[1:4]=[1,2,3] 

print("List Changing",list) 

 
list = 
['p','e','r','m','i','t'] 

print("Given list",list) 

list[0]=2 

print("List Changing",list) 

list[1:4]=[1,2,3] 

print("List Changing",list) 

list = 

['p','e','r','m','i','t'] 

 

print("Given list",list) 

 

list.append(['add','sub']) 

print("List appending",list) 

list = ['p','e','r','m','i','t' ] 

print("Given list",list) 

list.remove('p') 

print("List Removing",list) 

list = ['p','e','r','m','i','t'] 

print("Given list",list) 

list[2:5] = [] 

print("List Delete",list) 



38  

OUTPUT : 

 
List is created in the name: list 

List Created ['p', 'e', 'r', 'm', 'i', 't'] 

List indexing p 

List negative indexing t 

List slicing ['e', 'r', 'm'] 

Given list ['p', 'e', 'r', 'm', 'i', 't'] 

 

List Changing [2, 'e', 'r', 'm', 'i', 't'] 

List Changing [2, 1, 2, 3, 'i', 't'] 

Given list ['p', 'e', 'r', 'm', 'i', 't'] 

List appending ['p', 'e', 'r', 'm', 'i', 't', ['add', 'sub']] 

 

Given list ['p', 'e', 'r', 'm', 'i', 't'] 

 

List Removing ['e', 'r', 'm', 'i', 't'] 

 

Given list[‘p’,’e’,’r’,’m’,’i’,’t’] 

List Delete[‘p’,’e’,’t’] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RESULT: 

Thus program to create, slice, change, delete and index elements using list is executed and the 

output is obtained. 



39  

Ex. No: 6b IMPLEMENTING APPLICATIONS USING TUPLE 

AIM: 

 

To write a python program to create, slice, delete and index elements using Tuple. 

 

PRE LAB DISCUSSION 

Tuples are an immutable data structure in Python, meaning their elements cannot be changed once they are created. 

They are commonly used when you need to group multiple related values together in a compact and efficient way. 

Characteristics of Tuples 
Immutable: Once created, the elements in a tuple cannot be modified. 

Ordered: Tuples maintain the order of elements. 

Allows Duplicates: Elements in a tuple can be repeated. 

Heterogeneous: Can store elements of different data types. 

ALGORITHM: 

1: start 

2: create a tuple with empty, having integers,objects in different data types and nested tuples 

3: slicing the tuple with : operator 

4. Deleting the tuple with del method 

5. Indexing the elements of tuple 

6. Stop. 

PROGRAM1: 

# Python program to show how to create a tuple 

# Creating an empty tuple 

empty_tuple = () 

print("Empty tuple: ", empty_tuple) 

 

# Creating tuple having integers 

int_tuple = (4, 6, 8, 10, 12, 14) 

print("Tuple with integers: ", int_tuple) 

 

# Creating a tuple having objects of different data types 

mixed_tuple = (4, "Python", 9.3) 

print("Tuple with different data types: ", mixed_tuple) 

 

# Creating a nested tuple 

nested_tuple = ("Python", {4: 5, 6: 2, 8:2}, (5, 3, 5, 6)) 

print("A nested tuple: ", nested_tuple) 



40  

OUTPUT: 

Empty tuple: () 

Tuple with integers: (4, 6, 8, 10, 12, 14) 

Tuple with different data types: (4, 'Python', 9.3) 

A nested tuple: ('Python', {4: 5, 6: 2, 8: 2}, (5, 3, 5, 6)) 

PROGRAM2: 

# Python program to show how slicing works in Python tuples 

# Creating a tuple 

tuple_ = ("Python", "Tuple", "Ordered", "Immutable", "Collection", "Objects") 

# Using slicing to access elements of the tuple 

print("Elements between indices 1 and 3: ", tuple_[1:3]) 

# Using negative indexing in slicing 

print("Elements between indices 0 and -4: ", tuple_[:-4]) 

# Printing the entire tuple by using the default start and end values. 

print("Entire tuple: ", tuple_[:]) 

 

OUTPUT: 

Elements between indices 1 and 3: ('Tuple', 'Ordered') 

Elements between indices 0 and -4: ('Python', 'Tuple') 

Entire tuple: ('Python', 'Tuple', 'Ordered', 'Immutable', 'Collection', 'Objects') 

 

 

PROGRAM3: 

# Python program to show how to delete elements of a Python tuple 

# Creating a tuple 

tuple_ = ("Python", "Tuple", "Ordered", "Immutable", "Collection", "Objects") 

# Deleting a particular element of the tuple 

try: 

del tuple_[3] 

print(tuple_) 

except Exception as e: 

print(e) 

# Deleting the variable from the global space of the program 

del tuple_ 

# Trying accessing the tuple after deleting it 



41  

try: 

print(tuple_) 

except Exception as e: 

print(e) 

OUTPUT: 

'tuple' object does not support item deletion 

name 'tuple_' is not defined 

 

PROGRAM4: 

# Creating tuples 

Tuple_data = (0, 1, 2, 3, 2, 3, 1, 3, 2) 

# getting the index of 3 

res = Tuple_data.index(3) 

print('First occurrence of 1 is', res) 

# getting the index of 3 after 4th 

# index 

res = Tuple_data.index(3, 4) 

print('First occurrence of 1 after 4th index is:', res) 

 

OUTPUT: 

First occurrence of 1 is 2 

First occurrence of 1 after 4th index is: 6 

 

 

 

 

 

 

 

 

 

 

 

 

 

RESULT: 

Thus the program to illustrate the applications of tuple like create, slice, delete and index elements using 

Tuple has been executed successfully. 



42  

Ex. No: 7 IMPLEMENTING APPLICATIONS USING SETS & DICTIONARIES 

AIM: 

 

To write a python program to check if a Given String Is Hetero gram or Not using sets. & 

To write a python program to add items to the inventory, Update items to the inventory and to display items 

using dictionaries 

PRE LAB DISCUSSION: 

 
 

 

PATHFINDER, DUMBWAITER, and BLACKHORSE are example of Heterogram 

ALGORITHM (for Hectogram Program): 

1: start 

2: create a tuple with empty, having integers,objects in different data types and nested tuples 

3: slicing the tuple with : operator 

4. Deleting the tuple with del method 

5. Indexing the elements of tuple 

6. Stop. 

 

ALGORTITHM (for Inventory Program): 

 

1. Start 

2. Initialize an empty inventory (dictionary). 

3. Display Menu 

1. Show the following options: 

1. Display Inventory 

2. Add/Update Item 

3. Remove Item 

4. Exit 

4. Choice Input 

 

1. Take user input to choose an option (1 to 4). 

A string is a heterogram if it has no alphabet that occurs more than once. For example, “NaukriLearning” 

is not a heterogram. However, “blackhorse” is a heterogram. You can follow the below steps to check if a 

given string is a heterogram or not. 

 Separate all the alphabets from other any other characters (using list comprehension) 

 Convert list of alphabets into set because set has unique elements (using set()) 

 Check if the length of the set is equal to number of alphabets 

 If yes, then string is heterogram otherwise its not 

Using the ord() function which returns the ASCII value. If the ASCII value of the alphabet is greater than 

or equal to that of ‘a’ and less than or equal to ‘z’ then add it to the list ‘alphabets’ 



43  

5. Process Based on Choice 

 

1. Choice 1: Display Inventory 

1. If inventory is not empty, print all items and their quantities. 

2. Else, print "Inventory is empty." 

2. Choice 2: Add/Update Item 

1. Take the item name as input. 

2. Take the quantity of the item as input (ensure it's a positive integer). 

3. If the item exists, add the input quantity to the existing quantity. 

4. If not, add the item with the provided quantity. 

5. Print the updated item and its quantity. 

3. Choice 3: Remove Item 

 

1. Take the item name to remove as input. 

2. If the item exists, remove it and print that it was removed. 

3. If not, print "Item not found." 

4. Choice 4: Exit 

 

1. Exit the program. 

6. Repeat 

1. Continue displaying the menu until the user selects "Exit." 

7. End 

 

PROGRAM (For Hectogram) 

#check if string is heterogram or not 

#sample string 

str1 = "Naurkrilearning" 

str2 = "blackhorse" 

def check_heterogram(input): 
 

# separate out list of all alphabets 

list_of_alphabets = [ alph for alph in input if ( ord(alph) >= ord('a') and ord(alph) <= ord('z') )] 

 

 

# convert into set and compare lengths 

 

if len(set(list_of_alphabets))==len(list_of_alphabets): 



44  

print ("Yes, the string '", input, "'is heterogram") 

else: 

print ("No, the string'", input, "'is not heterogram") 

check_heterogram(str1) 

check_heterogram(str2) 
 

 

 

OUTPUT: 

 

 

 

 

 

No, the string ‘ Naurkrilearning ‘ is not heterogram 

Yes, the string ‘ Blackhorse ’ is heterogram 

Program (For Inventory): 

 

inventory = {} 

 

def display_inventory(): 

if inventory: 

for item, quantity in inventory.items(): 

print(f"{item}: {quantity}") 

else: 

print("Inventory is empty.") 

 

def add_or_update_item(): 

item = input("Enter item name: ") 

quantity = int(input(f"Enter quantity for {item}: ")) 

inventory[item] = inventory.get(item, 0) + quantity 

print(f"{item} updated with {inventory[item]} in stock.") 

 

def remove_item(): 

item = input("Enter item to remove: ") 

if item in inventory: 

del inventory[item] 

print(f"{item} removed.") 

else: 



45  

print(f"{item} not found.") 

 

def main(): 

while True: 

print("\n1. Display Inventory\n2. Add/Update Item\n3. Remove Item\n4. Exit") 

choice = input("Choose an option: ") 

 

if choice == "1": 

display_inventory() 

elif choice == "2": 

add_or_update_item() 

elif choice == "3": 

remove_item() 

elif choice == "4": 

break 

else: 

print("Invalid choice.") 

 

if  name == " main ": 

main() 

 

OUTPUT: 

 

1. Display Inventory 

2. Add/Update Item 

3. Remove Item 

4. Exit 

Choose an option: 1 

Inventory is empty. 

 

1. Display Inventory 

2. Add/Update Item 

3. Remove Item 

4. Exit 

Choose an option: 1 

Inventory is empty. 

 

1. Display Inventory 

2. Add/Update Item 

3. Remove Item 



46  

4. Exit 

Choose an option: 2 

Enter item name: Smartphone 

Enter quantity for Smartphone : 40 

Smartphone updated with 40 in stock. 

 

1. Display Inventory 

2. Add/Update Item 

3. Remove Item 

4. Exit 

Choose an option: 1 

Smartphone : 40 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RESULT: 

Thus the program to illustrate the applications of set has been executed successfully & thus the program to 

illustrate the applications of dictionaries has been executed successfully 



47  

Ex. No: 8 IMPLEMENTING PROGRAMS USING FUNCTIONS 

AIM: 

 

To write a python program to implement program using functions 

    PRELAB DISCUSSION 

Functions are one of the core building blocks of programming. They allow you to break down complex 

problems into smaller, reusable, and manageable parts, improving code readability, maintainability, and 

scalability. 

ALGORITHM: 

Step1:Start 

Step2:Define the function 

Step3:Check the given choice using if 

Step4:If the choice matches then given arithmetic expression will be evaluated 

Step5:If it not matches break the condition 

Step5:End 

 

PROGRAM/SOURCE CODE: 

 

def add(x, y): 

return x + y 

def subtract(x, y): 

return x - y 

def multiply(x, y): 

return x * y 

def divide(x, y): 

return x / y 

print("Select operation.") 

print("1.Add") 

print("2.Subtract") 

print("3.Multiply") 

print("4.Divide") 

choice = input("Enter choice(1/2/3/4): ") 

if choice in ('1', '2', '3', '4'): 

try: 

num1 = float(input("Enter first number: ")) 

num2 = float(input("Enter second number: ")) 

except ValueError: 

print("Invalid input. Please enter a number.") 

continue 

if choice == '1': 

print(num1, "+", num2, "=", add(num1, num2)) 

elif choice == '2': 

print(num1, "-", num2, "=", subtract(num1, num2)) 

elif choice == '3': 

print(num1, "*", num2, "=", multiply(num1, num2)) 

elif choice == '4': 



48  

print(num1, "/", num2, "=", divide(num1, num2)) 

next_calculation = input("Let's do next calculation? (yes/no): ") 

if next_calculation == "no": 

else: 

print("Invalid Input") 

 

OUTPUT: 

Select operation. 

1. Add 

2. Subtract 

3. Multiply 

4. Divide 

Enter choice(1/2/3/4): 1 

Enter first number: 5 

Enter second number: 6 

5.0 + 6.0 = 11.0 

Let's do next calculation? (yes/no): yes 

Enter choice(1/2/3/4): 3 

Enter first number: 7 

Enter second number: 7 

7.0 * 7.0 = 49.0 

Let's do next calculation? (yes/no): 

Enter choice(1/2/3/4): 4 

Enter first number: 4 

Enter second number: 4 

4.0 / 4.0 = 1.0 

 

Let's do next calculation? (yes/no): 

Enter choice(1/2/3/4): no 

Invalid 

 

 

 

 

 

 

 

 

 

 

 

 
RESULT: 

Thus the program is executed for design the calculator to perform arithmetic operations using 

functions and the output is obtained. 

 



49  

Ex. No: 9 IMPLEMENTING PROGRAMS USING STRINGS 

AIM: 

 

To implement Python program using Strings to count Vowels and Consonants 

PRELAB DISCUSSION 

1. Understanding the Problem 

    Given an input string, the goal is to: 
Identify the vowels (a, e, i, o, u). 

Identify the consonants (all alphabets that are not vowels). 

Count and display the number of vowels and consonants in the string. 

String Manipulation 
Strings in Python are sequences of characters. 

They are immutable, but you can process them character by character. 

         Character Checking 
Use the in keyword to check if a character belongs to a group (e.g., vowels). 

Use the .isalpha() method to ensure the character is a letter. 

         Iteration 
Iterate over each character in the string using a for loop. 

        Case-Insensitive Comparison 
Convert the string to lowercase using .lower() to ensure consistency. 

ALGORITHM: 

Step 1: Initialize Counters: 

 Start with two counters, v_count and c_count, both set to zero. These will keep track of the 
number of vowels and consonants. 

Step 2: Define Vowels: 
 Create a string of all vowels (both uppercase and lowercase) for easy checking. For example, 

vowels = "aeiouAEIOU". 

Step 3: Iterate Through Each Character: 
 Loop through each character in the input string. 

Step 4: Check if Character is Alphabetic: 

 For each character, first check if it’s a letter using isalpha() to ignore spaces, punctuation, and 
other non-alphabetic characters. 

Step 5: Determine if Vowel or Consonant: 

 If the character is a letter, check if it’s in the vowels string: 

o If it is, increment the v_count. 

o If it is not, it’s a consonant, so increment the c_count. 

Step 6: Return or Print the Results: 

 Once the loop completes, print or return the values of v_count and c_count. 



50  

 

 

OUTPUT: 

Enter a sentence: HELLO WORLD 

Vowels: 3, Consonants: 7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RESULT: 

Thus the program is executed for implement program using Strings to count Vowels and Consonants. 

PROGRAM/SOURCE CODE: 

def count_vowels_consonants(text): 

vowels = "aeiouAEIOU" 

v_count = 0 

c_count = 0 

for char in text: 
if char.isalpha(): # Check if the character is a letter 

if char in vowels: 

v_count += 1 

else: 

c_count += 1 

return v_count, c_count 

# Example usage 
user_input = input("Enter a sentence: ") 

vowels, consonants = count_vowels_consonants(user_input) 

print(f"Vowels: {vowels}, Consonants: {consonants}") 



51  

Ex. No: 10 IMPLEMENTING PROGRAMS USING WRITTEN MODULES AND 

PYTHON STANDARD LIBRARIES (PANDAS,NUMPY, MATPLOTLIB, 

SCIPY) 

AIM: 

To Implement python program using written modules and Python Standard Libraries (pandas,numpy, 

Matplotlib, scipy) 

 

PRE LAB DISCUSSION 

 Load data from a CSV file using pandas. 

 Clean and manipulate data using numpy. 

 Visualize the data using matplotlib. 

 Perform statistical analysis using scipy. 

ALGORITHM 

Step 1: Define the Modules: 
 Create separate modules for loading data, processing data, visualizing data, and performing 

statistical analysis. 

Step 2: Module 1: Data Loading (data_loader.py): 

 Define a function to load data from a CSV file using pandas. 
 If the file is not found, print an error message. 

Step 3: Module 2: Data Processing (data_processor.py): 
 Define functions to: 

o Calculate average scores for each subject using numpy. 

o Retrieve scores for a specific student. 

Step 4: Module 3: Data Visualization (data_visualizer.py): 

 Define a function to plot a bar chart of the average scores by subject using matplotlib. 
Step 5: Module 4: Statistical Analysis (data_analyzer.py): 

 Define a function to perform a statistical t-test between scores of two subjects using scipy. 
 The function should return the t-statistic and p-value. 

Step 6: Main Program (main_program.py): 

 Import the modules created in Steps 2–5. 

 Load the data using the data_loader module. 
 If data loading is successful: 

o Calculate and print the average scores. 

o Visualize the average scores by calling the plot_averages function from 

data_visualizer. 

o Retrieve and print scores for a specific student. 

o Perform a t-test between scores of two subjects and print the results. 

Prepare the Data (Sample CSV) 

Create a CSV file named student_scores.csv for the example. 

student_scores.csv 

Name,Math,Science,English 

Alice,88,92,85 

Bob,76,85,80 

Charlie,90,78,88 



52  

Daisy,65,70,60 

Evan,95,89,94 

Step 2: Create Modules for Different Tasks 

 

Module 1: Data Loader (data_loader.py) 

This module will handle loading the CSV file using pandas. 

import pandas as pd 

 

def load_data(file_path): 

"""Load data from a CSV file into a pandas DataFrame.""" 

try: 

data = pd.read_csv(file_path) 

return data 

except FileNotFoundError: 

print("File not found.") 

return None 

 

 

Module 2: Data Processor (data_processor.py) 

This module will handle data manipulation and calculation of averages using numpy. 

import numpy as np 

def calculate_averages(data): 
"""Calculate average scores for each subject.""" 

averages = { 

"Math": np.mean(data['Math']), 
"Science": np.mean(data['Science']), 

"English": np.mean(data['English']) 

} 
return averages 

def get_student_scores(data, student_name): 

"""Get scores for a specific student.""" 

student = data[data['Name'] == student_name] 

if not student.empty: 

return student[['Math', 'Science', 'English']].values[0] 

else: 

print("Student not found.") 

return None 

 

 

Module 3: Data Visualizer (data_visualizer.py) 

This module will handle data visualization using matplotlib. 

import matplotlib.pyplot as plt 

def plot_averages(averages): 

"""Plot a bar chart of average scores.""" 



53  

subjects = list(averages.keys()) 

scores = list(averages.values()) 

plt.bar(subjects, scores, color=['blue', 'green', 'red']) 

plt.xlabel('Subjects') 

plt.ylabel('Average Score') 

plt.title('Average Scores by Subject') 

plt.show() 

 

Module 4: Statistical Analysis (data_analyzer.py) 

This module will use scipy to perform statistical analysis (e.g., t-test between two subjects). 

from scipy.stats import ttest_ind 

def ttest_between_subjects(data, subject1, subject2): 

"""Perform t-test between two subjects to check if their scores are significantly different.""" 

scores1 = data[subject1] 

scores2 = data[subject2] 
t_stat, p_value = ttest_ind(scores1, scores2) 

return t_stat, p_value 

 

 

Step 3: Main Program 

Create the main program file that imports these modules and runs the analysis. 

# main_program.py 

import data_loader 

import data_processor 

import data_visualizer 

import data_analyzer 

# Load data 

data = data_loader.load_data('student_scores.csv') 
if data is not None: 

# Calculate averages 
averages = data_processor.calculate_averages(data) 
print("Average Scores:", averages) 

 

# Plot averages 

data_visualizer.plot_averages(averages) 

 

# Get scores for a specific student 

student_name = "Alice" 

scores = data_processor.get_student_scores(data, student_name) 

if scores is not None: 

print(f"Scores for {student_name}: Math={scores[0]}, Science={scores[1]}, English={scores[2]}") 

 

# Perform t-test between Math and Science scores 
t_stat, p_value = data_analyzer.ttest_between_subjects(data, 'Math', 'Science') 

print(f"T-test between Math and Science: t_stat={t_stat}, p_value={p_value}") 

if p_value < 0.05: 



54  

print("There is a statistically significant difference between Math and Science scores.") 

else: 

print("No statistically significant difference between Math and Science scores.") 

 

OUTPUT 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Average Scores: {'Math': np.float64(82.8), 'Science': np.float64(82.8), 'English': np.float64(81.4)} 

Scores for Alice: Math=88, Science=92, English=85 

T-test between Math and Science: t_stat=0.0, p_value=1.0 

No statistically significant difference between Math and Science scores. 

 

RESULT 

Thus the python program is implemented and executed using all the written modules and Python 

Standard Libraries (pandas,numpy, Matplotlib, scipy) 



55  

Ex. No: 11 IMPLEMENTING REAL-TIME/TECHNICAL APPLICATIONS USING 

FILE HANDLING 

AIM: 

To write a python program to Implement time/technical applications using file handling 

PRE LAB DISCUSSION: 

Types of File Access 

Python supports two main types of file access: 
1. Text Files: Files containing plain text, e.g., .txt. 

2. Binary Files: Files containing binary data, e.g., images, videos, or compiled programs. 

Modes of File Handling 

Python provides several modes for working with files: 

Mode Description 

r Open for reading (default mode). 

w Open for writing (overwrites file). 

a Open for appending (writes at end). 

rb Open for reading in binary mode. 

wb Open for writing in binary mode. 

 Basic Operations in File Handling 

Opening a File 

Files are opened using the open() function 

Reading from a File 
read(): Reads the entire file content. 

readline(): Reads one line at a time. 

readlines(): Reads all lines into a list. 

Writing to a File 
write(): Writes a single string to the file. 

writelines(): Writes a list of strings to the file. 

Closing a File 

Always close the file after operations to free system resources: 

Tips for Efficient File Handling 
Always use the  with statement to handle files. 

Validate file paths and modes before performing operations. 

Avoid hardcoding file paths; use dynamic input or configuration files. 

Test programs with various file sizes and content types. 

 

ALGORITHM 

 

Step 1 : Initialize Log File: 

 

 Define a file (e.g., system_logs.txt) to store the log entries. 



56  

 If the file does not already exist, create it or open it in append mode to avoid overwriting 

existing entries. 

Step 2 : Define a Function to Write Log Entries: 

 

 Create a function, write_log(message), which: 

o Retrieves the current timestamp. 

o Formats the timestamp and the log message as a single line. 
o Appends the log entry to the log file. 

 This function should add each new log entry at the end of the file without erasing previous 

logs. 

Step 3 :  Define a Function to Read Log Entries: 

 

 Create a function, read_logs(), which: 

o Opens the log file in read mode. 

o Reads all lines in the file and stores them in a list or directly displays them. 

o Prints each log entry line by line to provide a full overview of past events. 

Step 4 :  Define a Function to Analyze Logs by Time Range: 

 

 Create a function, analyze_logs_by_date(start_date, end_date), which: 

o Accepts a start and end date as parameters. 

o Converts these date strings to date objects for comparison. 

o Opens the log file and reads each line. 

o For each log entry, extracts and converts the timestamp from the line. 

o Filters logs that fall within the specified date range. 

o Counts the number of entries within the date range and displays the filtered logs. 

Step 5 : Main Program Execution: 

 

 Use the defined functions in a main program section to: 

o Write several sample log entries to demonstrate logging. 

o Read and display all log entries. 

o Analyze logs within a specified date range and display the results. 



57  

PROGRAM 

import os 

from datetime import datetime 

 

# Define log file name 

LOG_FILE = "system_logs.txt" 

def write_log(message): 

"""Append a log entry with a timestamp to the log file.""" 

with open(LOG_FILE, "a") as log_file: 

timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S") 

log_file.write(f"{timestamp} - {message}\n") 

print("Log written successfully.") 

 

def read_logs(): 

"""Read and print all log entries from the log file.""" 

if os.path.exists(LOG_FILE): 

with open(LOG_FILE, "r") as log_file: 

logs = log_file.readlines() 

for log in logs: 

print(log.strip()) 

else: 

print("Log file does not exist.") 

def analyze_logs_by_date(start_date=None, end_date=None): 

"""Analyze logs within a specified date range.""" 

if not os.path.exists(LOG_FILE): 

print("Log file does not exist.") 

return 

 

# Convert start and end date to datetime objects if provided 
start_date = datetime.strptime(start_date, "%Y-%m-%d") if start_date else None 

end_date = datetime.strptime(end_date, "%Y-%m-%d") if end_date else None 

with open(LOG_FILE, "r") as log_file: 

logs = log_file.readlines() 

# Filter and count logs within date range 

filtered_logs = [] 

for log in logs: 

log_timestamp = datetime.strptime(log.split(" - ")[0], "%Y-%m-%d %H:%M:%S") 

if (not start_date or log_timestamp >= start_date) and (not end_date or log_timestamp <= end_date): 

filtered_logs.append(log.strip()) 

 

# Print analysis results 
print(f"\nTotal Logs: {len(filtered_logs)}") 

if filtered_logs: 

print("\nFiltered Logs:") 

for log in filtered_logs: 

print(log) 

else: 



58  

print("No logs found within the specified date range.") 

if  name == " main ": 

# Writing logs 

write_log("System started.") 

write_log("User login successful.") 

write_log("File downloaded successfully.") 

write_log("Error encountered while accessing database.") 

# Reading all logs 

print("\n--- All Logs ---") 

read_logs() 

 

# Analyzing logs within a specific date range 

print("\n--- Logs from 2024-11-01 to 2024-11-04 ---") 

analyze_logs_by_date("2024-11-01", "2024-11-04") 

 

 

OUTPUT 

Log written successfully. 

Log written successfully. 

Log written successfully. 

Log written successfully. 

--- All Logs --- 

2024-11-06 14:49:45 - System started. 

2024-11-06 14:49:45 - User login successful. 

2024-11-06 14:49:45 - File downloaded successfully. 

2024-11-06 14:49:45 - Error encountered while accessing database. 

--- Logs from 2024-11-01 to 2024-11-04 --- 

Total Logs: 0 

No logs found within the specified date range. 

 

 

 

 

 

 

 

 

 

 

 

 

RESULT: 

Thus python program to Implement time/technical applications using file handling is executed 
successfully. 



59  

Ex. No: 12 IMPLEMENTING REAL-TIME/TECHNICAL APPLICATIONS USING 

EXCEPTION HANDLING 

AIM:  
  

To write a python program to implement time/technical applications using exception handling 
 

PRE LAB DISCUSSION: 

  read_file(file_path): 

 Attempts to read the specified file. 

 If the file is missing, FileNotFoundError is handled, displaying a message and returning None to 

indicate an error. 

  process_data(data): 

 Attempts to process each line of data by converting it to an integer. 

 If a line cannot be converted to an integer, a ValueError is raised. The function then handles the 

error, prints an error message, and returns None to stop further processing. 

  write_file(file_path, data): 

 Attempts to write processed data to the specified output file. 

 Adds a timestamp to track when the file was generated. 

 Catches any IOError during file writing, which could occur if there are permission issues. 

 A general Exception catch is added to handle any other unexpected errors. 

  main(): 

 Coordinates the read, process, and write functions. 

 Checks the return values from each function to ensure any errors terminate the program gracefully. 
 

ALGORITHM 

Step1: Define Input and Output Files: 

 Specify the file paths for the input and output files. 

Step2:   Define a Function to Read Data from the File: 

 Try to open the input file in read mode. 

 Handle FileNotFoundError: 

o If the file is missing, display an error message and return None to indicate the error. 

 Handle IOError: 

o If there’s an issue reading the file (e.g., permissions), display an error message and return 

None. 

 If successful, read the file contents line by line and return the data. 

Step3:  Define a Function to Process the Data: 

 Initialize an empty list to store the processed data. 

 For each line in the input data: 

o Try to convert the line to an integer. 

o Handle ValueError: 



60  

 If the conversion fails (e.g., non-integer data), print an error 

message indicating invalid data and return None. 

o If successful, perform calculations (e.g., squaring the integer). 
o Append the result to the processed data list. 

 Return the processed data if all lines are processed successfully. 

Step4:  Define a Function to Write Processed Data to the Output File: 

 

 Try to open the output file in write mode. 

 Handle IOError: 
o If there’s an issue writing to the file (e.g., lack of permissions), display 

an error message and stop the program. 
 Write each entry from the processed data to the file, including a timestamp to 

indicate when the data was generated. 

 If successful, display a message indicating data was written successfully. 

 

Step5: Main Program Logic: 

 

 Call the read function to load data from the input file. 

 If None is returned, stop further processing and exit the program. 
 Call the process function to process the data. 

 If None is returned, stop further processing and exit the program. 
 Call the write function to save the processed data to the output file. 
 Display a final message indicating the end of the program. 

 

Step6:  General Exception Handling: 

 
 Use a general Exception block to catch any unforeseen errors, display an error 

message, and safely exit the program. 

 

PROGRAM: 

from datetime import datetime 
 

# Define input and output file names 

INPUT_FILE = "data_input.txt" 

OUTPUT_FILE = "data_output.txt" 

def read_file(file_path): 

"""Read lines from a file and return them as a 

list.""" try: 

with open(file_path, "r") 

as file: data = 

file.readlines() 

print("File read 

successfully.") return data 

except FileNotFoundError: 

print(f"Error: File '{file_path}' not found.") 



61  

except IOError: 
print("Error: Issue with reading the file.") 

return None 

 

def process_data(data): 

"""Convert each line to an integer and calculate the square.""" 
processed_data = [] 

try: 

for line in data: 
number = int(line.strip()) # Attempt to convert to integer 

squared = number ** 2 # Calculate square 

processed_data.append(f"{number} squared is {squared}") 

print("Data processed successfully.") 

return processed_data 

except ValueError as e: 
print(f"Error: Invalid data. Cannot convert to integer. {e}") 

return None 

def write_file(file_path, data): 

"""Write processed data to a file with a timestamp.""" 

try: 

with open(file_path, "w") as file: 

timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S") 

file.write(f"Processed Data (generated on {timestamp}):\n") 

for line in data: 

file.write(line + "\n") 

print("Data written successfully.") 

except IOError: 

print("Error: Issue with writing to the file.") 

except Exception as e: 

print(f"An unexpected error occurred: {e}") 

def main(): 

# Step 1: Read data from the input file 

data = read_file(INPUT_FILE) 

if data is None: 

print("Terminating program due to read error.") 

return 

 
# Step 2: Process the data 

processed_data = process_data(data) 
if processed_data is None: 

print("Terminating program due to processing error.") 
return 

 

# Step 3: Write processed data to the output file 

write_file(OUTPUT_FILE, processed_data) 



62  

if  name == " main ": 
main() 

OUTPUT 

 

input file data_input.txt contains the following valid data 

4 

7 

15 

-3 

output in the console 

File read successfully. 
Data processed successfully. 

Data written successfully. 

the output file data_output.txt would be: 

 

Processed Data (generated on 2024-11-06 14:46:12): 

4 squared is 16 

7 squared is 49 

15 squared is 225 

-3 squared is 9 

 

 

 

 

 

 

 

 

 

 

 

 

RESULT: 

Thus a python program to implement time/technical applications using file handling is executed 
successfully. 



63  

Ex. No: 13 CREATING AND INSTANTIATING CLASSES 
AIM: 

 

To write a python program for employee payroll processing using class and objects. 

PRE LAB DISCUSSION: 

Write a Python class Employee with attributes like emp_id, emp_name, emp_salary, and emp_department and 

 

overtime = hours_worked – 50 

Overtime amount = (overtime * (salary / 50)) 

 
ALGORITHM: 

Step1:Create a class employee 

 

Step2:Define a function to calculate the salary 

 

Step3:Define a function to assign the department of the employee 

Step4:Define a function to print employee details 

Step5:Create an object to access the data from the list 

Step6:End 

methods like calculate_emp_salary, emp_assign_department, and print_employee_details. 

 

Sample Employee Data: 

"ADAMS", "E7876", 50000, "ACCOUNTING" 

"JONES", "E7499", 45000, "RESEARCH" 

"MARTIN", "E7900", 50000, "SALES" 

"SMITH", "E7698", 55000, "OPERATIONS" 

 Use 'assign_department' method to change the department of an employee. 

 

 Use 'print_employee_details' method to print the details of an employee. 

 

 Use 'calculate_emp_salary' method takes two arguments: salary and hours_worked, which is the 

number of hours worked by the employee. If the number of hours worked is more than 50, the 

method computes overtime and adds it to the salary. Overtime is calculated as following formula: 



64  

PROGRAM/SOURCE CODE : 

 

 

class Employee: 

 

def  init (self, name, emp_id, salary, department): 

 

self.name = name 

self.id = emp_id 

self.salary = salary 

self.department = department 

 

def calculate_salary(self, salary, hours_worked): 

overtime = 0 

if hours_worked > 50: 

 

overtime = hours_worked - 50 

 

self.salary = self.salary + (overtime * (self.salary / 50)) 

def assign_department(self, emp_department): 

self.department = emp_department 

def print_employee_details(self): 

print("\nName: ", self.name) 

print("ID: ", self.id) 

print("Salary: ", self.salary) 

print("Department: ", self.department) 

print(" ") 

employee1 = Employee("ADAMS", "E7876", 50000, "ACCOUNTING") 

employee2 = Employee("JONES", "E7499", 45000, "RESEARCH") 

employee3 = Employee("MARTIN", "E7900", 50000, "SALES") 

employee4 = Employee("SMITH", "E7698", 55000, "OPERATIONS") 



65  

print("Original Employee Details:") 

employee1.print_employee_details() 

employee2.print_employee_details() 

employee3.print_employee_details() 

employee4.print_employee_details() 

employee1.assign_department("OPERATIONS") 

employee4.assign_department("SALES") 

employee2.calculate_salary(45000, 52) 

employee4.calculate_salary(45000, 60) 

print("Updated Employee Details:") 

employee1.print_employee_details() 

employee2.print_employee_details() 

employee3.print_employee_details() 

employee4.print_employee_details() 

OUTPUT: 

Original Employee Details: 

Name: ADAMS 

ID: E7876 

 

Salary: 50000 

 

Department: ACCOUNTING 

 

 

 

Name: JONES 

ID: E7499 

Salary: 45000 

 

Department: RESEARCH 



66  

 

 

Name: MARTIN 

ID: E7900 

Salary: 50000 

Department: SALES 

 

 

Name: SMITH 

ID: E7698 

Salary: 55000 

 

Department: OPERATIONS 

 

 

 

Updated Employee Details: 

Name: ADAMS 

ID: E7876 

 

Salary: 50000 

 

Department: OPERATIONS 

 

 

 

Name: JONES 

ID: E7499 

Salary: 46800.0 

Department: RESEARCH 

 

 

Name: MARTIN 

ID: E7900 

Salary: 50000 



67  

Department: SALES 

 

 

Name: 

SMIT

H ID: 

E7698 

Salary: 

66000.0 

Departme

nt: 

SALES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RESULT: 

 

Thus the Program was executed to create employee payroll processing using 

classes and objects and the output is obtained 



68  

Ex. No: 14 DATA VISUALIZATION TECHNIQUES  
 

AIM: To study and implement python program to implement various Data Visualizations using 

python Libraries 

 

1. Matplotlib 

Matplotlib is a data visualization library and 2-D plotting library of Python It was initially released 

in 2003 and it is the most popular and widely-used plotting library in the Python community. It comes 

with an interactive environment across multiple platforms. Matplotlib can be used in Python scripts, the 

Python and IPython shells, the Jupyter Notebook, web application servers, etc. It can be used to embed 

plots into applications using various  GUI toolkits like Tkinter, GTK+, wxPython, Qt, etc. So you can use 

Matplotlib to create plots, bar charts, pie charts, histograms, scatterplots, error charts, power spectra, 

stemplots, and whatever other visualization charts you want! The Pyplot module also provides a 

MATLAB-like interface that is just as versatile and useful as MATLAB while being free and open 

source. 

import matplotlib.pyplot as plt 

 

# Sample data 

x = [0, 1, 2, 3, 4, 5] 

y = [0, 1, 4, 9, 16, 25] 

# Create a line plot 

plt.plot(x, y, label="y = x^2", color="b", marker="o") 

# Add labels and title 

plt.xlabel("X-axis") 

plt.ylabel("Y-axis") 

plt.title("Line Plot: y = x^2") 

plt.legend() 

# Display the plot 

plt.show() 

 

https://www.geeksforgeeks.org/matplotlib-tutorial/


69  

 

 

Example 2: 

import matplotlib.pyplot as plt 

# Sample data 

categories = ['A', 'B', 'C', 'D', 'E'] 

values = [23, 45, 56, 78, 33] 

# Create a bar chart 

plt.bar(categories, values, color='red') 

# Add labels and title 

plt.xlabel("Categories") 

plt.ylabel("Values") 

plt.title("Bar Chart Example") 

# Display the plot 

plt.show() 

 



70  

 

 

2. Plotly 

Plotly is a free open-source graphing library that can be used to form data visualizations. Plotly 

(plotly.py) is built on top of the Plotly JavaScript library (plotly.js) and can be used to create web-based 

data visualizations that can be displayed in Jupyter notebooks or web applications using Dash or saved as 

individual HTML files. Plotly provides more than 40 unique chart types like scatter plots, histograms, line 

charts, bar charts, pie charts, error bars, box plots, multiple axes, sparklines, dendrograms, 3-D charts, 

etc. Plotly also provides contour plots, which are not that common in other data visualization libraries. In 

addition to all this, Plotly can be used offline with no internet connection. 

Example 4 

import plotly.express as px 

# Sample Data 

df = px.data.iris() 

# Create a scatter plot 

fig = px.scatter(df, x='sepal_width', y='sepal_length', color='species', 

                 title='Scatter Plot Example', labels={'sepal_width': 'Sepal Width', 'sepal_length': 'Sepal 

Length'}) 

fig.show() 

 

https://www.geeksforgeeks.org/html-tutorials/
https://www.geeksforgeeks.org/python-plotly-tutorial/


71  

 

import plotly.graph_objects as go 

# Data 

labels = ['Category A', 'Category B', 'Category C', 'Category D'] 

values = [450, 300, 200, 50] 

# Create a pie chart 

fig = go.Figure(go.Pie(labels=labels, values=values, hole=0.4)) 

fig.update_layout(title='Pie Chart Example') 

fig.show() 

 

 

3. Seaborn 

Seaborn is a Python data visualization library that is based on Matplotlib and closely integrated 

with the NumPy and pandas data structures. Seaborn has various dataset-oriented plotting functions 

that operate on data frames and arrays that have whole datasets within them. Then it internally performs 

the necessary statistical aggregation and mapping functions to create informative plots that the user 

https://www.geeksforgeeks.org/python-numpy/
https://www.geeksforgeeks.org/python-seaborn-tutorial/


72  

desires. It is a high-level interface for creating beautiful and informative statistical graphics that are 

integral to exploring and understanding data. The Seaborn data graphics can include bar charts, pie charts, 

histograms, scatterplots, error charts, etc. Seaborn also has various tools for choosing colour palettes that 

can reveal patterns in the data. 

 

Example code for histogram 

import seaborn as sns 

import matplotlib.pyplot as plt 

# Load a sample dataset 

data = sns.load_dataset('penguins') 

# Create a histogram 

sns.histplot(data=data, x='flipper_length_mm', hue='species', kde=True, multiple='stack', 

palette='viridis') 

plt.title('Seaborn Histogram Example') 

plt.show() 

 

 

 

Example code for Heat map 

import seaborn as sns 

import matplotlib.pyplot as plt 

# Create a pivot table 

data = sns.load_dataset('flights') 



73  

# Use keyword arguments for index, columns, and values 

pivot = data.pivot(index='month', columns='year', values='passengers')   

# Create a heatmap 

sns.heatmap(data=pivot, cmap='coolwarm', annot=True, fmt='d') 

plt.title('Seaborn Heatmap Example') 

plt.show() 

 

output 

 

4.Squarify 

Squarify is used for tree maps, which represent hierarchical data. 

 

!pip install squarify 

import squarify 

import matplotlib.pyplot as plt 

 

# Data 

sizes = [50, 25, 15, 10] 

labels = ['Group A', 'Group B', 'Group C', 'Group D'] 

 

# Create Tree Map 

squarify.plot(sizes=sizes, label=labels, alpha=0.8) 



74  

plt.axis('off') 

plt.title('Tree Map Example') 

plt.show() 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Result:  

 

Thus the study and implementation of python program to display data visualizations using 

python libraries. 

 



75  

 

VIVA QUESTIONS 

 

1. Basics of Python 

1. What is Python, and what are its key features? 

2. How is Python different from other programming languages like Java or C++? 

3. Explain the concept of an interpreter in Python. 

4. What are Python's main data types? 

5. What is the difference between is and == in Python? 

2. Python Syntax and Semantics 

6. How do you define a variable in Python? 

7. What are Python keywords, and how many are there in the current version? 

8. Explain the significance of indentation in Python. 

9. What are comments in Python, and how are they written? 

10. Can Python have multiline comments? If yes, how? 

3. Control Flow 

11. What is the difference between if, elif, and else in Python? 

12. How does a while loop differ from a for loop in Python?  

13. What is the purpose of the break and continue statements? 

14. How can you iterate over a range of numbers in Python? 

15. Explain list comprehensions with an example. 

 

 4. Functions and Modules 

16. What are functions, and why are they used in Python? 

17. How do you define and call a function in Python? 

18. What are default arguments and keyword arguments in Python functions? 

19. How do you import a module in Python? Give an example. 

20. What is the difference between import and from ... import? 

5. File Handling 

21. How do you open a file in Python? 

22. Explain the difference between reading (r), writing (w), and appending (a) modes. 

23. What is the with statement in file handling? 

24. How can you read a file line by line in Python? 

25. What happens if you try to read a file that doesn’t exist? 

6. Object-Oriented Programming (OOP) 

26. What is a class in Python, and how is it different from an object? 

27. What is the significance of the self keyword in Python classes? 

28. How do you create an instance of a class in Python? 



76  

29. What are instance variables and class variables in Python? 

30. Explain inheritance and polymorphism in Python. 

7. Exception Handling 

31. What are exceptions in Python? 

32. How is exception handling implemented in Python? 

33. What is the difference between try-except and try-finally? 

34. What is the use of the raise keyword in Python? 

35. How can you create custom exceptions in Python? 

8. Python Collections 

36. What is the difference between a list, tuple, set, and dictionary in Python? 

37. How can you access elements in a tuple? 

38. What is the significance of the keys() and values() methods in dictionaries? 

39. How do you remove duplicate elements from a list in Python? 

40. How is slicing implemented in Python lists? 

9. Advanced Topics 

41. What are decorators in Python? 

42. How does Python manage memory? 

43. Explain the difference between mutable and immutable objects in Python. 

44. What is the difference between shallow copy and deep copy? 

45. How does Python handle multi-threading? 

10. Libraries and Frameworks 

46. What are some commonly used Python libraries for data analysis? 

47. Explain the difference between NumPy and Pandas. 

48. How is Django different from Flask? 

49. What is the purpose of Matplotlib in Python? 

50. How can you install third-party libraries in Python? 

 

 


