SRM VALLIAMMAI ENGINEERING COLLEGE

(An Autonomous Institution) SRM Nagar, Kattankulathur – 603 203

DEPARTMENT OF MEDICAL ELECTRONICS

QUESTION BANK

IV SEMESTER

MD3462 – BIO CONTROL SYSTEMS

Regulation – 2023

Academic Year 2024 – 2025 (EVEN SEMESTER)

Prepared by

Mr. Satheeswaran.C, Assistant Professor (OG)/Medical Electronics

UNIT I INTRODUCTION

Open and Closed loop Systems, Mathematical Modeling of systems, Block diagram and signal flow graph representation of systems - reduction of block diagram and signal flow graph, Introduction to Physiological control systems- Illustration, Linear models of physiological systems, Difference between engineering and physiological control systems.

	PART – A						
Q. No.	Questions	CO's	BT Level	Competence			
1.	What are the components of feedback control system?	CO1	BTL1	Remember			
2.	Define block diagram and list its basic components.	CO1	BTL1	Remember			
3.	Distinguish between open loop and closed loop system.	CO1	BTL 2	Understand			
4.	Why negative feedback is invariably preferred in a closed loop system?	CO1	BTL1	Remember			
5.	Express the transfer function of a control system.	CO1	BTL 2	Understand			
6.	Write the torque balance equation of a of an ideal rotational mass element.	CO1	BTL 2	Understand			
7.	Find the poles and zeros of the following transfer function	CO1	BTL 2	Understand			
	T(s) = 2(s+2) / s(s+4)						
8.	Mention the basic elements of the translational mechanical system.	CO1	BTL1	Remember			
9.	Name the two types of electrical analogous for mechanical system.	CO1	BTL1	Remember			
10.	Define signal flow graph.	CO1	BTL 2	Understand			
11.	Draw the equivalent block diagram for the figures 1 and 2 given below:	CO1	BTL 2	Understand			
	(i) $G_1 \rightarrow G_1 \rightarrow G_1 \rightarrow G_1 \rightarrow G_1 \rightarrow G_1 \rightarrow G_1 \rightarrow G_2 \rightarrow $						
12.	Identify the forces acting on an ideal spring in a control system and explain the force balance equation.	CO1	BTL 2	Understand			
13.	How will you reduce two blocks in parallel using block diagram reduction technique?	CO1	BTL1	Remember			
14.	Draw the equivalent signal flow graph for the system whose block diagram is as shown in figure. $R(s) \longrightarrow G_1 \longrightarrow G_2 \longrightarrow C(s)$ H	CO1	BTL 2	Understand			
15.	What are the basic properties of signal flow graph?	CO1	BTL1	Remember			

16.	Write the Mason's Gain formula.	CO1	BTL 2	Understand
17.	Determine the gain $\frac{Y}{x}$ for the signal flow graph shown below:	CO1	BTL 2	Understand
18.	State non-touching loop.	CO1	BTL1	Remember
19.	List the characteristics of negative feedback.	CO1	BTL 2	Understand
20.	For the given signal flow graph, identify the number of forward paths and individual loops.	CO1	BTL1	Remember
21.	Enumerate the advantages of physiological models.	CO1	BTL1	Remember
22.	Differentiate engineering and physiological control systems.	CO1	BTL 2	Understand
23.	Define qualitative and quantitative physiological model.	CO1	BTL1	Remember
24.	What are the elements of a physiological control system?	CO1	BTL1	Remember

	PART – B					
1.	Apply the principles of system dynamics to determine the transfer function	CO1	BTL 3	Apply		
	of the given mechanical translational system. (16)					
	$ \begin{array}{c} \begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$					

14.	Using the mason's gain formula, compute the gain of the following	CO1	BTL 4	Analyze
	system: (16)			
	$\begin{array}{c} \begin{array}{c} -H_{1} \\ 3 \\ -H_{2} \\ 0 \\ 1 \\ -H_{2} \end{array} \begin{pmatrix} G_{4} \\ G_{5} \\ G_{4} \\ G_{6} \\ G_{7} \\ -H_{2} \\ -H_{2} \\ \end{array} \begin{pmatrix} G_{6} \\ G_{6} \\ G_{6} \\ G_{7} \\ G_{6} \\ G_{7} \\ G_{$			
15.	Explain the physiological control system analysis with an example. (16)	CO1	BTL 4	Analyze
16.	Compare and contrast the key differences between engineering and	CO1	BTL 3	Apply
	physiological control systems in detail. (16)			
17.	Describe in detail the linear model of respiratory and muscle mechanics with	CO1	BTL 3	Apply
	necessary diagrams. (16)			

UNIT II TIME REPONSE ANALYSIS

Step and impulse responses of first order and second order systems - time domain specifications of first and second order systems - steady state error constants.

	PART – A				
Q. No.	Questions	CO's	BT Level	Competence	
1.	What is time response?	CO2	BTL 1	Remember	
2.	Name the test signals used in control system.	CO2	BTL 1	Remember	
3.	Write the mathematical expressions for step and ramp signals.	CO2	BTL 2	Understand	
4.	State various time domain specifications.	CO2	BTL 1	Remember	
5.	Illustrate peak overshoot.	CO2	BTL 2	Understand	
6.	Express the type and order of the following system $ \frac{G(s)}{H(s)} = \frac{10}{s^3(s^2 + 2s + 1)} $	CO2	BTL 2	Understand	
7.	Distinguish between the order and type of system.	CO2	BTL 2	Understand	
8.	Label the response of the second order under damped systems.	CO2	BTL 1	Remember	
9.	Define pole and zero of a function F(s).	CO2	BTL 1	Remember	
10.	Mention two advantages of generalized error constant over static error constant.	CO2	BTL 1	Remember	
11.	Find the damped frequency of oscillation for a second order system	CO2	BTL 2	Understand	
	which has a damping ratio of 0.6 and natural frequency of oscillation is				
	10 rad/sec.				

12.	The closed loop transfer function of a second order system is given by $C(s)$ 200	CO2	BTL 2	Understand
	$\frac{1}{R(s)} = \frac{1}{(S^2 + 20S + 200)}$			
	Determine the damping ratio and natural frequency of oscillation.			
13.	A unity feedback system has an open loop transfer function of	CO2	BTL 2	Understand
	$G(s) = \frac{10}{(1-s)^2}$			
	(s+1)(s+2)			
	Compute the steady state error for unit step input.			
14.	How the system is classified on the value of damping?	CO2	BTL 1	Remember
15.	Solve for the type and order of the system	CO2	BTL 2	Understand
	$G(s)H(s) = \frac{(s+4)}{(s-2)(s+0.25)}$			
16.	Write the response of first-order system with unit step input.	CO2	BTL 2	Understand
17.	How did the type number of a system is identified? Mention its	CO2	BTL 1	Remember
	significance.			
18.	Give the relation between generalized and static error coefficients.	CO2	BTL 2	Understand
19.	The open loop transfer function of a unity feedback control system is	CO2	BTL 1	Remember
	given by			
	$G(s) = \frac{10(S+2)}{S^2(S+5)}$			
	Find the acceleration error constant.			
20.	Find the unit impulse of system given with zero initial conditions.	CO2	BTL 1	Remember
	$H(s) = \frac{55}{(S+2)}$			
21.	What are the transient and steady-state responses?	CO2	BTL 1	Remember
22.	Define settling time.	CO2	BTL 1	Remember
23.	The damping ratio of system is 0.6 and the natural frequency of	CO2	BTL 2	Understand
	oscillation is 8 rad/sec. Calculate the rise time.			
24.	What is meant by type number of the system? Give its significance.	CO2	BTL 2	Understand

		PART –B			
1.	(i)	Name the various standard test signals?(3)	CO2	BTL 3	Apply
	(ii)	Draw the characteristics diagram and obtain the mathematical			
		representation of the test signals. (13)			
2.	Analyz	ze the response of first order system for a unit step input. Plot the	CO2	BTL 4	Analyze
	respon	use of the system. (16)			
3.	Write	the response of undamped second order system for unit step input.	CO2	BTL 3	Apply
		(16)			
4.	Derive	e the expression for second order system for under damped case and	CO2	BTL 3	Apply
	when	the input is unit step. (16)			

5.	Analyze the expression for second order system for critically damped case	CO2	BTL 4	Analyze
	and when the input is unit step. (16)			
6.	Calculate the response of unity feedback system whose open loop transfer	CO2	BTL 4	Analyze
	function is			
	$G(s) = \frac{4}{s(s+5)}$			
	and when the input is unit step. (16)			
7.	Outline the expressions for the following time domain specifications of second order under damped system due to unit step input. (i) Rise time. (4)	CO2	BTL 4	Analyze
	(ii) Peak time. (4)			
	(iii) Delay time. (4) (iv) Peak over shoot (4)			
8.	The unity feedback system is characterized by an open loop transfer	CO2	BTL 4	Analyze
	function			
	$G(s) = \frac{K}{K}$			
	s(s) = s(s+10)			
	(i) Examine the gain K, so that the system will have a damping ratio of			
	0.5 for this value of K. (8)			
	(ii) Examine peak overshoot for a unit step input. (8)			
9.	A Unity feedback control system is characterized by open loop transfer	CO2	BTL 3	Apply
	function			
	$G(s) = \frac{10}{10}$			
	s(s+2)			
	Compute the rise time, percentage overshoot, peak time and settling time			
	for a step input of 12 units. (16)			
10.	A closed loop servo is represented by the differential equation	CO2	BTL 4	Analyze
	d^2c dc dc			
	$\frac{dt^2}{dt^2} + 8\frac{dt}{dt} = 64e$			
	where c is the displacement of the output shaft, r is the displacement of the			
	input shaft and $e = r - c$. Calculate undamped natural frequency, damping			
	ratio and percentage maximum overshoot for unit step input. (16)			
11.	Obtain the expression for K_p , K_v , and K_a for Type 0, 1 and 2 systems when	CO2	BTL 3	Apply
	the input is unit step, ramp and parabola. (16)			

12.	For a u	inity feedback control system, the open loop transfer function is	CO2	BTL 3	Apply
	c()	10(s+2)			
	G(s) =	$=\frac{1}{s^2(s+1)}$			
	(i)	Find the position, velocity, acceleration error constants.(8)			
	(ii)	Compute the steady state error when the input is R(s) where (8)			
		$R(s) = \frac{3}{s} - \frac{2}{s^2} + \frac{1}{3s^3}$			
13.	The op	ben loop transfer function of a servo system with unity feedback is	CO2	BTL 3	Apply
	G(s)	$=\frac{10}{10}$			
		s(0.1s+1)			
	Evalua	te the static error constants of the system. Obtain the steady state			
	error o	f the system, when subjected to an input given by the polynomial,			
	r(t)	$= a_0 + a_1 t + \frac{a_2}{2} t^2 \tag{16}$			
14.	Consid	ler a unity feedback system with a closed loop transfer	CO2	BTL 4	Analyze
	C(s)	Ks + b			
	$\overline{R(s)}$	$-\frac{1}{s^2+as+b}$			
	Deterr	nine the open loop transfer function $G(s)$. Show that steady state error			
	with u	nit ramp input is given by $\frac{a-k}{b}$ (16)			
15.	For the	e given open loop transfer function G(s) for servomechanism,	CO2	BTL 3	Apply
	interp	et what type of input signal give rise to a constant steady state error			
	and ca	lculate the value.			
	C(c)	10			
	U(3)	$\frac{1}{s^2(s+1)(s+2)}$ (16)			
16.	A posi	tional control system with velocity feedback is shown. Examine the	CO2	BTL 4	Analyze
	respon	se of the system for unit step input. (16)			
	R(s)	$\bullet \begin{array}{c} 100 \\ s(s+2) \\ \hline 0.1s+1 \end{array}$			
17.	Measu	rements conducted on a servo mechanism show that the system	CO2	BTL 3	Apply
	respon	se to be $c(t) = 1 + 0.2e^{-60t} - 1.2e^{-10t}$			
	when s	subjected to a unit step input.			
	(i)	Obtain an expression for closed loop transfer function.(8)			
	(ii)	Compute the undamped natural frequency and damping ratio. (8)			

UNIT III FREQUENCY RESPONSE ANALYSIS

Frequency domain specifications - Polar plots - Bode plots - Nyquist plot – Nyquist stability criterion, closed loop stability - Constant M and N circles - Nichol's chart.

	PART - A						
Q. No.	Questions	CO's	BT Level	Competence			
1.	Write the expression for resonant peak and resonant frequency.	CO3	BTL 2	Understand			
2.	Define Phase margin & gain margin.	CO3	BTL 1	Remember			
3.	What is meant by frequency response of the system?	CO3	BTL 1	Remember			
4.	What are frequency domain specifications?	CO3	BTL 1	Remember			
5.	The damping ratio and natural frequency of oscillations of a second	CO3	BTL 1	Remember			
	order system is 0.5 and 8 rad/sec respectively. Find resonant frequency						
	and resonant peak.						
6.	How can the phase margin and gain margin be improved?	CO3	BTL 1	Remember			
7.	Find the shape of polar plot for the open loop transfer function	CO3	BTL 2	Understand			
	$G(s)H(s) = \frac{1}{s(1+Ts)}$						
Q	Identify the shape of polar plot for the transfer function	CO3	DTI 2	Understand			
0.	<i>K</i>	COS	DIL 2	Understand			
	$G(s) = \frac{\pi}{s(1+sT_1)(1+sT_2)}$						
9.	Why frequency domain analysis is needed?	CO3	BTL 1	Remember			
10.	List the advantages of Frequency Response Analysis.	CO3	BTL 2	Understand			
11.	Define phase cross over frequency.	CO3	BTL 1	Remember			
12.	Define gain cross over frequency.	CO3	BTL 1	Remember			
13.	State the significance of Nichol's plot.	CO3	BTL 2	Understand			
14.	Write the correlation between time and frequency response.	CO3	BTL 2	Understand			
15.	List the frequency domain methods to find the stability of the system.	CO3	BTL 2	Understand			
16.	State Nyquist stability criterion.	CO3	BTL 1	Remember			
17.	How do you determine the stability of a system by using Nyquist	CO3	BTL 1	Remember			
	criterion?						
18.	Identify the methods used to specify the performance of control	CO3	BTL 2	Understand			
	systems.						
19.	Discuss about the corner frequency in frequency response analysis?	CO3	BTL 2	Understand			
20.	Compare the Bode plot and Nyquist plot analysis.	CO3	BTL 2	Understand			
21.	List the various graphical techniques available for frequency domain	CO3	BTL 2	Understand			
	analysis.						

22.	State the limitations of frequency domain analysis.	CO3	BTL 1	Remember
23.	Find the phase angle of the given transfer function	CO3	BTL 1	Remember
	$G(s) = \frac{10}{s(1+0.4s)(1+0.1s)}$			
24.	List the advantages of Bode plot.	CO3	BTL 2	Understand

	PART –B					
1.	Plot the bode diagram for the given transfer function and estimate the	CO3	BTL 3	Apply		
	gain and phase cross over frequencies. (16)					
	$G(s) = \frac{10}{s(1+0.4s)(1+0.1s)}$					
2.	Sketch the bode plot for the transfer function	CO3	BTL 3	Apply		
	$G(s) = \frac{75(1+0.2s)}{s(s^2+16s+100)}$					
	and determine phase margin and gain margin. (16)					
3.	Calculate the system gain K by sketching the Bode plot for the transfer	CO3	BTL 3	Apply		
	function					
	$C(s) = \frac{Ks^2}{1-s^2}$					
	$G(s) = \frac{1}{(1+0.2s)(1+0.02s)}$					
	with gain cross over frequency of 5rad/sec. (16)					
4.	Analyze the bode plot for the function given by (16)	CO3	BTL 4	Analyze		
	$G(s) = \frac{5(1+2s)}{(1+4s)(1+0.25s)}$					
5.	Given	CO3	BTL 3	Apply		
	$G(s) = \frac{Ke^{-0.2s}}{c(s+2)(s+8)}$					
	Draw the Bode plot and Calculate K for the following two cases: (16) (i) Gain margin equal to 6db.					
	(ii) Phase margin equal to 45° .	G 00				
6.	(i) Evaluate open loop transfer function of a unity feedback system	CO3	BTL 4	Analyze		
	given by					
	$G(s) = \frac{1}{s(1+s)(1+2s)}$					
	Sketch the polar plot. (12)					
	(ii) Evaluate the gain and phase margin for the above system. (4)					
7.	Report on the polar plot of an open loop transfer function of a unity	CO3	BTL 4	Analyze		
	feedback system given by					
	$G(s) = \frac{1}{1}$					
	$s^{2}(1+s)(1+2s)$					
	Sketch the polar plot. Also determine the gain and phase margin for the					
	above system. (16)					

8.	Construct the polar plot and determine the gain margin and phase margin	CO3	BTL 3	Apply
	of a unity feedback control system whose open loop transfer function is,			
	$G(s) = \frac{(1+0.2s)(1+0.025s)}{(1+0.025s)}$			
	$s^{3}(1+0.005s)(1+0.001s) $ (16)			
9.	Consider a unity feedback system with open loop transfer function	CO3	BTL 4	Analyze
	$G(s) = \frac{1}{1}$			
	$s(3) = s(1+s^2)$			
	From the polar plot and determine the gain and phase margin. (16)			
10.	Outline the procedure for obtaining the polar plot for a system whose	CO3	BTL 4	Analyze
	open loop transfer function is(16)			
	$G(s) = \frac{4}{(s-s)(s-s)}$			
	(s+2)(s+4)			
11.	Calculate the range of K for which closed loop system is stable for the	CO3	BTL 4	Analyze
	open loop transfer function			
	$G(s)H(s) = \frac{K}{s(s+2)(s+10)}$			
	S(3 + 2)(3 + 10)			
12	Skotch the poler plot of a unity feedback system with open loop transfer	CO2	DTI 1	Analyza
12.	function given by	COS	DIL 4	Anaryze
	function given by,			
	$G(s) = \frac{30}{s(s+1)(s+5)(s+10)}$			
	and calculate the gain and phase margins of the closed loop system. (16)			
13.	Using polar plot, Estimate gain cross over frequency phase cross over	CO3	BTL 4	Analyze
	frequency, gain margin and phase margin of feedback system with open			
	loop transfer function. (16)			
	C(a) = 10			
	$G(s) = \frac{1}{s(1+0.2s)(1+0.002s)}$			
14.	Sketch the Bode plot and hence calculate Gain cross over frequency,	CO3	BTL 3	Apply
	Phase cross over frequency, Gain margin and Phase margin for the			
	function			
	$G(s) = \frac{10(s+3)}{(s+3)(s+3)(s+3)}$			
	$s(s+2)(s^2+4s+100) $ (16)			
15.	Write short notes on constant M and N circles and outline the procedure	CO3	BTL 4	Analyze
	to derive the Nichol's chart from constant M circles. (16)			
16.	Describe the procedure for constructing the bode magnitude plot and	CO3	BTL 3	Apply
	phase plot. (16)			
17.	Analyze the procedure for designing the Nyquist plot and explain the	CO3	BTL 4	Analyze
	steps involved. (16)			

UNIT IV STABILITY ANALYSIS

Definition of stability, Routh- Hurwitz criteria of stability, Root locus technique - construction of root locus and study of stability.

	PART – A						
Q. No.	Questions	CO's	BT Level	Competence			
1.	What is characteristic equation?	CO4	BTL 1	Remember			
2.	Quote BIBO stability criterion.	CO4	BTL 2	Understand			
3.	State Routh's criterion for stability.		BTL 1	Remember			
4.	Write the necessary and sufficient condition for stability.Condition		BTL 2	Understand			
5.	What conclusion can be provided when there is a row of all zeros in	CO4	BTL 2	Understand			
	Routh array?						
6.	List the advantages of Routh Hurwitz stability criterion?	CO4	BTL 1	Remember			
7.	Give any two limitations of Routh stability criterion.	CO4	BTL 2	Understand			
8.	Find the range of values of K for which the system would be stable. The	CO4	BTL 2	Understand			
	characteristic equations of a system is $s^3 + 3s^2 + 7s + K = 0$ using						
	Routh stability criterion.						
9.	Identify the main objective of root locus analysis technique.	CO4	BTL 2	Understand			
10.	Interpret the relationship between roots of characteristic equation and	CO4	BTL 2	Understand			
	stability.						
11.	Define relative stability.	CO4	BTL 1	Remember			
12.	Identify dominant pole location in s-plane.	CO4	BTL 2	Understand			
13.	What are the effects of adding a zero to open loop transfer function of a	CO4	BTL 1	Remember			
	system?						
14.	How centroid of the asymptotes found in root locus technique?	CO4	BTL 1	Remember			
15.	How will you find root locus on real axis?	CO4	BTL 1	Remember			
16.	Illustrate the effects of adding open loop poles and zeros on the nature of the root locus and on system?	CO4	BTL 2	Understand			
17.	Point out the regions of root locations for stable, unstable and limitedly	CO4	BTL 2	Understand			
	stable systems.						
18.	Predict about the stability of the system when the roots of the	CO4	BTL 2	Understand			
19.	characteristic equation are lying on imaginary axis? Is addition of a pole will make a system more stable? Justify your		BTL 2	Understand			
	answer.						
20.	How centroid of the asymptotes found in root locus technique?	CO4	BTL 1	Remember			
21.	Define BIBO stability.	CO4	BTL 1	Remember			

22.	Find the range of K for closed loop stable behavior of system with	CO4	BTL 1	Remember
	characteristic equation $2s^4 + 12s^3 + 22s^2 + 12s + K = 0$ by using Routh's			
	stability criterion.			
23.	State the rule for obtaining breakaway point in root locus.	CO4	BTL 1	Remember
24.	List the advantages of Nyquist stability criterion over that of Routh	CO4	BTL 1	Remember
	criterion.			

	PART –B					
1.	Using	g Routh criterion, determine the stability of the system represented	CO4	BTL 4	Analyze	
	by th	e characteristics equation, $s^4 + 8s^3 + 18s^2 + 16s + 5 = 0$.				
	Com	nent on the location of the roots of characteristic equation. (16)				
2.	Cons	ider the sixth order system with the characteristic equation	CO4	BTL 4	Analyze	
	s ⁶ +	$2s^5 + 8s^4 + 12s^3 + 20s^2 + 16s + 16 = 0$				
	Use I	Routh-Hurwitz criterion to examine the stability of the system and				
	comm	nent on location of the roots of the characteristics equation. (16)				
3.	Appl	y Routh array and determine the stability of the system	CO4	BTL 4	Analyze	
	repre	sented by the characteristic equation,				
	s ⁵ +	$s^4 + 2s^3 + 2s^2 + 3s + 5 = 0$				
	Com	ment on the location of characteristic equation. (16)				
4.	(i)	Evaluate the stability of the system by using Routh stability	CO4	BTL 4	Analyze	
		criterion for the equation				
		$9s^5 - 20s^4 + 10s^3 - s^2 - 9s - 10 = 0 \tag{13}$				
	(ii)	Identify the location of the roots and comment. (3)				
5.	Deter	mine the location of roots on S- Plane and stability for the	CO4	BTL 4	Analyze	
	polyr	omial $s^7 + 9s^6 + 24s^5 + 24s^4 + 24s^3 + 24s^2 + 23s + 15 = 0$				
		(16)				
6.	Use t	he Routh stability criterion to determine the location of roots on	CO4	BTL 4	Analyze	
	the s-	plane and hence the stability for the system represented by the				
	chara	cteristic equation				
	s ⁵ +	$4s^4 + 8s^3 + 8s^2 + 7s + 4 = 0. (16)$				
7.	Exan	ine the range of K for the stability of unity feedback system	CO4	BTL 4	Analyze	
	whose open loop transfer function is (16)					
	G(s)	$=\frac{K}{r(r+1)(r+2)}$				
		S(S + 1)(S + 2)				

8.	A feedback system has open loop transfer function of	CO4	BTL 4	Analyze
	$G(s) = \frac{Ke^{-s}}{1-s}$			
	$s(s^2 + 5s + 9)$			
	Determine the maximum value of K for stability of closed loop system.			
	(16)			
9.	Identify the root locus of a unity feedback system having transfer	CO4	BTL 4	Analyze
	function			
	$G(s) = \frac{K}{s(s^2 + 4s + 13)}$			
	Find the range of K for which the system is stable. (16)			
10.	Sketch the root locus of the system whose open loop transfer function	CO4	BTL 3	Apply
	is			
	$G(s) = \frac{K}{s(s+2)(s+4)}$			
	Find the value of K so that damping ratio of the closed loop system is			
	0.5. (16)			
11.	The open loop transfer function of a unity feedback system	CO4	BTL 3	Apply
	K(s+9)			
	$G(s) = \frac{1}{s(s^2 + 4s + 11)}$			
	Sketch the root locus of the system. (16)			
12.	Sketch the root locus for the unity feedback system whose open loop	CO4	BTL 3	Apply
	transfer function is (16)			
	$G(s)H(s) = \frac{K}{(s-s)(s-s)}$			
	$s(s+4)(s^2+4s+20)$			
13.	Sketch root locus for the unity feedback system whose open loop	CO4	BTL 3	Apply
	transfer function is, (16)			
	K(s+1.5) = K(s+1.5)			
	$s(s)H(s) = \frac{1}{s(s+1)(s+5)}$			
14.	Explain the steps involved in constructing root locus. (16)	CO4	BTL 3	Apply
15.	The open loop transfer function of a unity feedback system is given by	CO4	BTL 3	Apply
	$G(s) = \frac{K}{(s+2)(s+4)(s^2+6s+25)}$			
	By Apply the Routh criterion, discuss the stability of the closed loop			
	system as a function of K. (16)			
16.	Sketch the root locus for the unity feedback system whose open loop	CO4	BTL 3	Apply
	transfer is (16)			
	$G(s) = \frac{K(s^2 + 6s + 25)}{s(s+1)(s+2)}$			

17.	Sketch the root locus for the unity feedback system whose open loop	CO4	BTL 3	Apply
	transfer function is (16)			
	$G(s) = \frac{K}{s(s^2 + 6s + 10)}$			

UNIT V BIOLOGICAL CONTROL SYSTEM ANALYSIS

Simple models of muscle stretch reflex action - steady state analysis of muscle stretch reflex action, transient response analysis of neuromuscular reflex model action, frequency response of circulatory control model, Stability analysis of Pupillary light reflex.

	PARTA					
Q. No.		Questions	CO's	BT Level	Competence	
1.	What is the neuromuscular reflex model of action?		CO5	BTL 1	Remember	
2.	Mention four examples of reflex actions.		CO5	BTL 1	Remember	
3.	Identify	the main functions of the neuromuscular junction.	CO5	BTL 2	Understand	
4.	What ha	ppens when a muscle is excited?	CO5	BTL 1	Remember	
5.	Distingu	ish between fast and slow twitch muscle fibers.	CO5	BTL 2	Understand	
6.	List the	types of neuromuscular disorders.	CO5	BTL 2	Understand	
7.	Write an	ny two examples of a polysynaptic reflex.	CO5	BTL 2	Understand	
8.	Point ou	it the role of the muscle spindle in the muscle stretch reflex	CO5	BTL 2	Understand	
	action.					
9.	What is	the reflex arc?	CO5	BTL 1	Remember	
10.	List the	vitamins that are essential for nerve repair.	CO5	BTL 2	Understand	
11.	Define r	nerve conduction velocity test.	CO5	BTL 2	Understand	
12.	Classify	two categories of sensations.	CO5	BTL 2	Understand	
13.	How is	the frequency response used to analyze auto regulation of	CO5	BTL 1	Remember	
	blood fl	ow and other physiological responses in circulatory control?				
14.	What is	the frequency response of a control system?	CO5	BTL 1	Remember	
15.	List the	functions of cardiovascular control systems.	CO5	BTL 2	Understand	
16.	Name th	ne most common eye problems.	CO5	BTL 1	Remember	
17.	What is	the Swinging Flashlight Test, and how does it assess for a	CO5	BTL 1	Remember	
	relative	afferent pupillary defect (RAPD)?				
18.	Identify	the basic components of reflex arc.	CO5	BTL 2	Understand	
19.	State Pu	pillary Light Reflex.	CO5	BTL 1	Remember	

20.	Point out the significance of the pupillary light reflex.	CO5	BTL 2	Understand	
21.	What is the normal size of the pupil?	CO5	BTL 1	Remember	
22.	What is meant by direct and indirect pupillary light reflex?	CO5	BTL 1	Remember	
23.	Identify the other terms used for myopia and hypermetropia?	CO5	BTL 2	Understand	
24.	What is the pupillary reaction score?	CO5	BTL 1	Remember	
	PART – B			<u> </u>	
1.	Explain in detail the simple models of muscle stretch reflex action.	CO5	BTL 4	Analyze	
	(16)				
2.	Analyze the steady-state behavior of the muscle stretch reflex action	CO5	BTL 4	Analyze	
	and evaluate its implications for maintaining muscle tone and posture.				
	(16)				
3.	Write short notes on	CO5	BTL 3	Apply	
	(i) Monosynaptic Reflex Model (8)				
	(ii) Polysynaptic Reflex Model (8)				
4.	Describe the following Models of Muscle Stretch Reflex Action.	CO5	BTL 3	Apply	
	(i) Servo-control model (8)	-			
	(i) Feedback mechanism model. (8)	_			
5.	Describe the steady state analysis of muscle stretch reflex action. (16)	CO5	BTL 3	Apply	
6.	Analyze the transient response of neuromuscular reflex model action.	CO5	BTL 4	Analyze	
	(16)				
7.	Analyze the frequency response of circulatory control model. (16)	CO5	BTL 4	Analyze	
8.	Explain in detail the stability analysis of pupillary light reflex.	CO5	BTL 4	Analyze	
	(16)				
9.	Describe the following components of pupillary light reflex	CO5	BTL 3	Apply	
	(i) Afferent Pathway (8)				
	(i) Efferent Pathway (8)				
10.	How can the stability of the pupillary light reflex be analyzed using	CO5	BTL 4	Analyze	
	mathematical models to represent the reflex arc dynamics? (16)				
11.	Outline the several factors that can affect the stability of pupillary	CO5	BTL 4	Analyze	
	light reflex. (16)				
12.	Draw the block diagram of raw muscle model, open loop and closed	CO5	BTL 3	Apply	
	loop model for muscle stretch reflex and explain it in detail. (16)				
13.	Analyze the differences and similarities between monosynaptic and	CO5	BTL 4	Analyze	
	polysynaptic reflexes. (16)				
14.	Sketch the block diagram of muscle stretch reflex action and explain	CO5	BTL 3	Apply	
	in detail. (16)				

15.	Explain in detail about muscle model and muscle spindle model with		CO5	BTL 4	Analyze
	neat diagrams.	(16)			
16.	Illustrate the mathematical modeling and stability analysis of		CO5	BTL 3	Apply
	Pupillary Reflex.	(16)			
17.	Explain the mathematical model of circulatory control in detail.	(16)	CO5	BTL 3	Apply