

SRM VALLIAMMAI ENGINEERING OLLEGE 💉

(An Autonomous Institution) SRM Nagar, Kattankulathur – 603 203

DEPARTMENT OF MEDICAL ELECTRONICS

QUESTION BANK

IV SEMESTER

MD3463 – ANALOG AND DIGITAL INTEGRATED CIRCUITS

Regulation – 2023

Academic Year 2024-2025

Prepared by

Ms. Vanmathi, Asst. Professor - MDE

SRM VALLIAMMAI ENGINEERING COLLEGE

(An Autonomous Institution) SRM Nagar, Kattankulathur – 603 203.

DEPARTMENT OF MEDICAL ELECTRONICS

QUESTION BANK

SUBJECT : MD3463 – ANALOG AND DIGITAL INTEGRATED CIRCUITS

SEM / YEAR: IV/ II - YEAR B.E.

UNIT I

INTRODUCTION TO OPERATIONAL AMPLIFIER AND ITSAPPLICATIONS

Operational amplifier –ideal characteristics, Performance Parameters, Linear and Nonlinear Circuits and their analysis- voltage follower, Inverting amplifier, Non-inverting Amplifiers, Differentiator, Integrator, Voltage to Current converter, Instrumentation amplifier, Low pass, High pass filter and band pass filters, Comparator, Multivibrator and Schmitt trigger.

	PART – A						
Q.	Questions	CO	BT	Competence			
No			Level				
1.	What is an operational amplifier?	CO1	BTL 1	Remembering			
2.	Write down the characteristics of ideal operational amplifier.	CO1	BTL 1	Remembering			
3.	Differentiate the ideal and practical characteristics of an op-amp.	CO1	BTL 2	Understanding			
4.	Draw the Internal Block diagram of Op – Amp (IC 741).	CO1	BTL 2	Understanding			
5.	Define Slew rate.	CO1	BTL 1	Remembering			
6.	Why open loop OP-AMP configurations are not used in linear applications?	CO1	BTL 2	Understanding			
7.	Define virtual ground of an OP-Amp.	CO1	BTL 1	Remembering			
8.	What are the applications of V-I converter?	CO1	BTL 1	Remembering			
9.	Mention some of the linear applications of op – amps.	CO1	BTL 2	Understanding			
10.	Mention some of the non – linear applications of op-amps.	CO1	BTL 2	Understanding			
11.	What are the areas of application of non-linear op- amp circuits?	CO1	BTL 1	Remembering			
12.	Give an application of inverting amplifier.	CO1	BTL 2	Understanding			
13.	What is a differentiator?	CO1	BTL 1	Remembering			
14.	What are the main drawbacks of ideal differentiator?	CO1	BTL 1	Remembering			
15.	What are the characteristics of the comparator?	CO1	BTL 1	Remembering			
16.	Mention some commonly used active filters.	CO1	BTL 2	Understanding			
17.	Why IC 741 is not used for high frequency applications?	CO1	BTL 2	Understanding			
18.	What is voltage follower?	CO1	BTL 1	Remembering			
19.	What is the need for an instrumentation amplifier?	CO1	BTL 1	Remembering			
20.	List the features of instrumentation amplifier.	CO1	BTL 2	Understanding			
21	What do you mean by multivibrator?	CO1	BTL 2	Understanding			
22	What is an astable multivibrator?	CO1	BTL 1	Remembering			
23	What is a bistable multivibrator?	CO1	BTL 1	Remembering			
24	What is a Schmitt trigger?	CO1	BTL 1	Remembering			
	PART B						

r					
1.	With a help of a block diagram, explain the various stages present in an operational amplifier	(16)	CO1	BTL 4	Analyzing
2	(i) Write down the characteristics and their respective values of an	(10)			
2	ideal Operational amplifier	(10)	CO1	RTI 4	Anglyzing
	(ii) Compare the ideal and practical characteristics of IC7/1	(6)	COI		Anaryzing
3	List and explain the DC characteristics of an operational emplifier	(0)	001	DTI 4	
5	List and explain the DC characteristics of an operational amplituel.	(10)	COI	BIL 4	Analyzing
4	Explain in detail about Open and closed loop configurations of op- amp.	(16)	CO1	BTL 3	Applying
5	Describe about Inverting amplifier and Non-Inverting amplifier with neat diagram.	(16)	CO1	BTL 4	Analyzing
6	Describe the operation of voltage follower with neat diagram.	(16)	CO1	BTL 3	Applying
7	(i) Discuss the working of a differentiator using op-amp.	(13)	001	2120	
	(i) List out the errors in ideal differentiator and analyse the	(10)	CO1	BTL 4	Analyzing
	practical differentiator for those error	(3)	001		· ······· j zinig
8	With neat figures describe the working of an integrator using on-	(16)			
Ũ	amp.	(10)	CO1	BTL 4	Analyzing
9	Derive the expression for output voltage of an practical integrator.	(16)	CO1	BTL 4	Analyzing
10	Write the operation of Current to Voltage and Voltage to current	(16)			
	converter circuits.		CO1	BTL 4	Analyzing
11	Explain the working of three op-amp Instrumentation Amplifier with neat diagram.	(16)	CO1	BTL 3	Applying
12	Explain the working of Low pass filter and High pass filter in	(16)			
	detail	(10)	CO1	BTL 3	Applying
13	Explain the working of Band pass filter in detail	(16)	CO1	BTI 3	Applying
14	With next diagram explain the exerction of a managetable	(10)	COI	DILJ	Apprying
14	with neat diagram, explain the operation of a monostable	(10)	CO1	BTL 4	Analyzing
1.5		(1.0)			
15	Illustrate the working of Astable Multivibrator using op-amp with	(16)	CO1	BTL 3	Applying
1.0	applications in detail.	(1.5)			
16	Describe about the working of Comparator with neat circuit	(16)	CO1	BTL 4	Analyzing
15	diagram.	(1 -			
17	Explain the working of Schmitt Trigger with neat sketch.	(16)	CO1	BTL 3	Applying

UNIT II

DIGITAL TO ANALOG AND ANALOG TO DIGITAL CONVERTERS AND PLL

Types of D/A converter -Weighted resistor, R-2R ladder DAC, D/A Accuracy and Resolution. A/D converter -Flash, Dual slope, Successive approximation, A/D Accuracy and Resolution. Voltage controlled oscillator, Voltage to Frequency converters. PLL-Closed loop analysis of PLL, Frequency multiplication/ division, FSK demodulator.

	PART - A						
Q.	Questions	CO	BT	Competence			
No			Level				
1.	Classify the A/D converters based on their operational features.	CO2	BTL 1	Remembering			
2.	List the direct type ADCs.	CO2	BTL 2	Understanding			
3.	What is the principle of operation of successive Approximation ADC?	CO2	BTL 1	Remembering			

4.	What is the main drawback of a dual-slop ADC?		CO2	BTL 1	Remembering
5.	Define conversion time.		CO2	BTL 1	Remembering
6.	Find the number of resistors required for an 8-bit weighted resistor	r D/A			
	converter. Consider the smallest resistance is R and obtain	those	CO2	BTL 2	Understanding
	resistance values.				
7.	Mention the advantages of inverted R-2R (current type) ladder	D/A	~~		T T 1 4 1 *
0	converter over R -2R (voltage type) D/A converter?		CO2	BIL 2	Understanding
8.	Which is the fastest A/D converter? Give reason.	1	CO2	BTL 2	Understanding
9.	whose input binary number is 10111100 (for a 8 bit DAC)?	v and	CO2	BTL 2	Understanding
10.	Calculate the number of comparators required for realizing a 4 bit A/D converter.	flash	CO2	BTL 2	Understanding
11.	A 12 bit D/A converter have resolution of 30 mV/ LSB. Find th scale output voltage.	e full	CO2	BTL 2	Understanding
12.	How many comparators are required to build n –bit flash type converter?	A/D	CO2	BTL 2	Understanding
13.	What output voltage would be produced by a D/A converter whose output range is 0 to 10 V and whose input binary number is 0110 for a 4 bit DAC.		CO2	BTL 2	Understanding
14.	State the advantages of dual slope ADC.			BTL 1	Remembering
15.	What is voltage controlled oscillator?		CO2	BTL 1	Remembering
16.	Why VCO is also called as V to F converter?		CO2	BTL 2	Understanding
17.	Define capture range.		CO2	BTL 1	Remembering
18.	Outline the basic building blocks of PLL.		CO2	BTL 1	Remembering
19.	Define lock-in range of PLL.		CO2	BTL 1	Remembering
20.	What is Pull in time?		CO2	BTL 1	Remembering
21	Name two advantages of an R-2R ladder DAC over a weighted re DAC.	esistor	CO2	BTL 2	Understanding
22	Define resolution in a D/A converter.		CO2	BTL 1	Remembering
23	What is frequency shift keying technique?		CO2	BTL 1	Remembering
24	What is the main difference between frequency multiplication and division?		CO2	BTL 1	Remembering
	PART B				
1.	Describe about the Weighted resistor DAC with neat diagram.	(16)	CO2	BTL 3	Applying
2.	Explain in detail on the operational features of 4-bit weighted resistor type D/A converter.	(16)	CO2	BTL 4	Analyzing
3.	Analyze the working of R- 2R ladder type DAC.	(16)	CO2	BTL 4	Analyzing
4.	Describe the operation of voltage mode R- 2R ladder D/A	(16)	CO2	BTL 3	Applying
	converter.				
5.	Explain the working of Inverted R- 2R ladder type DAC.	(16)	CO2	BTL 4	Analyzing
6.	Explain in detail about performance analysis of ADC.	(16)	CO2	BTL 4	Analyzing
7.	Elaborate the operation of flash type A/D converter with neat diagram.	(16)	CO2	BTL 3	Applying
8.	Explain in detail about the dual slope type ADC with neat sketch.	(16)	CO2	BTL 3	Applying

9.	Describe the working principle of successive approximation type	(16)	CO2	BTL 3	Applying
	ADC.				
10.	Describe the operation of any two direct type of ADCs and	(16)	CO2	BTL 3	Applying
	Explain.				
11.	Explain the working of a VCO and Derive the expression for	(16)	CO2	BTL 4	Analyzing
	voltage to frequency conversion factor.				
12.	Illustrate the operation of VCO with neat block diagram. Also	(16)	CO2	BTL 4	Analyzing
	derive an expression for f0.				
13.	Explain the process of capturing the lock and also derive for	(16)	CO2	BTL 4	Analyzing
	capture range and lock range.				
14.	Describe the block diagram of PLL with neat sketch?	(16)	CO2	BTL 3	Applying
15.	Discuss any three applications of PLL in detail with neat circuit	(16)	CO2	BTL 4	Analyzing
	diagram.				
16.	Describe the purpose and functioning of Frequency	(16)	CO2	BTL 3	Applying
	Multiplication/Division in detail.				
17.	Construct the block diagram and explain working principle,	(16)	CO2	BTL 3	Applying
	characteristics of Frequency Demodulator.				

UNIT III

THE BASIC GATES AND COMBINATIONAL LOGIC CIRCUITS

Number Systems – Decimal, Binary, Octal, Hexadecimal, 1's and 2's complements, Codes –Binary, BCD, 84-2-1, 2421, Excess 3,Boolean theorems, Logic gates, Universal gates, Sum of products and product of sums, Minterms and Maxterms, Karnaugh map and tabulation methods. Logic families- TTL, MOS, CMOS, BiCMOS – Comparison of Logic families.

	PART - A				
Q.	Questions	CO	BT	Competence	
No			Level		
1.	Convert the given decimal numbers into their binary equivalent (108.364)10.	CO3	BTL 2	Understanding	
2.	Identify the Boolean function $Y=A+BC$ in a sum of minterrms.	CO3	BTL 2	Understanding	
3.	Solve the pair of decimal number to BCD and Add (65)10+ (58)10.	CO3	BTL 1	Remembering	
4.	Outline the concept of duality in Boolean algebra.	CO3	BTL 1	Remembering	
5.	Convert A3BH and 2F3H into Binary and Octal respectively.	CO3	BTL 1	Remembering	
6.	Construct the Boolean function to a minimum number of literals XY+X'Z+YZ.	CO3	BTL 1	Remembering	
7.	Convert (115)10 into hexadecimal numbers.	CO3	BTL 2	Understanding	
8.	Define 'Minterm' and 'Maxterm'.	CO3	BTL 2	Understanding	
9.	Find the Excess-3 code for the following decimal numbers. (18)10 and (56)10.	CO3	BTL 2	Understanding	
10.	Draw the active high tri-state Gate & write its truth table.	CO3	BTL 2	Understanding	
11.	Determine AND gate and OR gate using NAND gates.	CO3	BTL 2	Understanding	
12.	Write the principle of Distributive law.	CO3	BTL 1	Remembering	

13.	What is meant by Prime Implicants and Essential prime implicants?		CO3	BTL 1	Remembering
14.	Simplify the Boolean expression: $F=XY+X(Y+Z)+Y(Y+Z)$.		CO3	BTL 2	Understanding
15.	Compute the given function using NAND gates only.		CO3	вті <i>э</i>	Understanding
	$F(X, Y, Z) = \Sigma m (0, 6).$		005	DIL 2	Understanding
16.	Write the equivalent Gray code for [10110]2.		CO3	BTL 1	Remembering
17.	If A & B are Boolean variables and if $A=1 & A+B=0$, determine B?		CO3	BTL 2	Understanding
18.	Apply De-Morgan's theorem to simplify <i>A</i> + <i>BC</i> .		CO3	BTL 2	Understanding
19.	Implement $Y = \Sigma$ (1, 4, 5, 6, 7) in SOP form using AOI logic.		CO3	BTL 2	Understanding
20.	Determine the Boolean expression for the output of the system show figure. A	vn in	CO3	BTL 2	Understanding
21	Perform 2's complement subtraction of 010110 – 100101.		CO3	BTL 2	Understanding
22	Interpret the Boolean function and the truth table of the given logic.		CO3	BTL 2	Understanding
23	Write the Boolean expression for the output of the system show figure $A = D = C$ $D = C$ E'	7n in - F	CO3	BTL 2	Understanding
24	Reduce the expression <i>ABC</i> + <i>ABC</i> using Boolean theorems.		CO3	BTL 1	Remembering
	PART- B	(4 m)	<i></i>		
1.	Simplify the Minimized logic function using K-Maps. F (A, B, C, D) = Σm (1, 3, 5, 8, 9, 11, 15) + Σd (2, 13). Implement the minimal SOP using NAND and NOR gates.	(16)	CO3	BTL 3	Applying
2.	Find the function $F(A,B,C,D,E) = \Sigma m (1,4,6,10,20,22,24,26)+$	(16)	CO3	BTL 3	Applying
	$\Sigma d(0,11,16,27)$ using K-map method. Draw the circuit of the minimal expression using basic gates.				
3.	Analyze the given function Y (M, N, O, P, Q) = $\Sigma m(0,2,4,6,9,13,21,23,25,29,31)$. Draw the K-map and implement the simplified expression using basic gates.	(16)	CO3	BTL 3	Applying
4.	Minimize the following Boolean expressions using BooleanAlgebra and draw the logic diagram.(i) $F(X, Y, Z) = (X+Y)(X(Y+Z)) + XY + XZ.$ (ii) $F(X, Y, Z) = XYZ + XYZ + XY$ (iii) $F(X,Y,Z) = XYZ + XZ + YZ$ (i) Explain about Excess-3 codes and Grav Code with an	(6) (5) (5) (6)	CO3	BTL 3 BTL 3	Applying Applying
		` '			

	example.	(5)			
	(ii) Convert the Gray code (110101) to Binary code. (iii) Convert the binary number (10101101)2 to Gray code	(5)			
6.	Using K-map method Reduce the following Boolean function	(16)	CO3	BTL 3	Applying
0.	$F=\Sigma m (0, 2, 3, 6, 7) + \Sigma d (8, 10, 11, 15)$ and obtain minimal	(10)			
	SOP.				
7.	Write the minimized Boolean expression for the function using	(16)	CO3	BTL 3	Applying
	K-map and draw the logic diagram.				
	$F(w, x, y,z) = \Sigma m(0,1,2,4,5,6,8,9,12,13,14).$	(1.0)	GO 1		
8.	Illustrate the logical Expression on a 4-variable K – map F=ABCD+AB'C'D'+AB'C+AB & realize using only NAND gates	(16)	CO3	BTL 3	Applying
9.	Elaborate the minimization of the given Boolean function using	(16)	CO3	BTL 4	Analyzing
	Quine-Mc-Cluskey method $F=\Sigma m (0, 1, 2, 5, 7, 8, 9, 10, 13, 15).$	()			
	Realize the simplified function using logic gates.				
10.	Using K-map method, simplify the given Boolean function and	(16)	CO3	BTL 4	Analyzing
	obtain minimum POS expression and draw the logic diagram.				
	$X = \Pi m(1,3,5,7,9) + \Pi d(8,11,15).$				
11.	Simplify using Karnaugh Map for the following functions and	(16)	CO3	BTL 3	Applying
	draw the logic diagram using basic gates.				
	Y (A, B,C,D)= $\Pi M(0,3,4,9,10,12)$ + $\Pi d(2,7,8,13)$				
12.	Solve the following Function using Tabulation method	(16)	CO3	BTL 4	Analyzing
	$F=\Sigma m(1,2,3,7,8,9,10,11,14,15)$ and realize the circuit using logic				
	gates.				
13.	(i) Solve (725.25)8 to its decimal, binary and Hexadecimal	(8)	CO3	BTL 3	Applying
	equivalent.				
	(ii) Find 1's and 2's Complement of 8-digit binary number	(8)			
	10101101.				
14.	(i) Implement $Y=(A+C)(A+D)(A+B+C)$	(8)	CO3	BTL 3	Applying
	(ii) Solve by perfect induction				
	(a) $A + AB = A$	(8)			
	(b) $A(A+B) = A$				
	(c) $A+A'B = A+B$ and				
	(d) $A(A'+B) = AB$				
15.	Minimize the following Boolean function using K-map and	(16)	CO3	BTL 3	Applying
	implement the same using only NAND gates.				
	F(A, B, C, D) = (D'+A'B'C' + AB'C' + A'BC'D).				
16.	Determine simplified SOP for the following Boolean function	(16)	CO3	BTL 4	Analyzing
	using Quine- McCluskey Method.				
	$F(A, B, C, D) = \Sigma m(1, 3, 4, 5, 9, 10, 11) + \Sigma d(6, 8).$				
17.	(a) Convert the following:	(8)	CO3	BTL 4	Analyzing
	xx,				

(i) (A3B) ₁₆ to Decimal number			
(ii) (32) ₈ to Hexadecimal number	(8)		
(b) Subtract $(1010)_2$ from $(1000)_2$ using 1's and 2's Complement.			

	UNIT IV COMBINATIONAL LOCIC CIDC	IIITS			
Desi	on of combinational circuits - Code-Converters Half and Full Adders	Binary	Paralle	1 Adder –	Carry look ahead
Adde	er, BCD Adder, Magnitude Comparator, Decoder, Encoder, Priority En	coder, a	and Mux	/Demux.	early rook anead
	PART - A	,			
Q.	Questions		CO	BT	Competence
No				Level	-
1.	Define combinational circuits.		CO4	BTL 1	Remembering
2.	Name some of the combinational circuits.		CO4	BTL 1	Remembering
3.	Summarize the design procedure of combinational circuits.		CO4	BTL 1	Remembering
4.	Write the Boolean expression for a half adder.		CO4	BTL 1	Remembering
5.	Draw a full adder circuit.		CO4	BTL 1	Remembering
6.	From the truth table derive the logic equation of a half subtractor.		CO4	BTL 1	Remembering
7.	Write down the limitation on the speed of an adder.		CO4	BTL 2	Understanding
8.	Differentiate between half adder and full adder.		CO4	BTL 2	Understanding
9.	Why is MUX called as a data selector?		CO4	BTL 2	Understanding
10.	List out the applications of multiplexer.		CO4	BTL 2	Understanding
11.	Mention the uses of demultiplexer.		CO4	BTL 2	Understanding
12.	How the decoder functions as a demultiplexer?		CO4	BTL 2	Understanding
13.	What do you mean by comparator?		CO4	BTL 1	Remembering
14.	14. Identify maximum number of outputs for a decoder with a 6-bit data		COA	DTI 1	Domonthouin o
	word.		004	BILI	Remembering
15.	Point out the function of select inputs of a MUX		CO4	BTL 1	Remembering
16.	Analyze the schematic diagram of 2X1 multiplexer.		CO4	BTL 2	Understanding
17.	Distinguish between a demultiplexer and decoder.		CO4	BTL 2	Understanding
18.	Compare Multiplexer with Demultiplexer.		CO4	BTL 2	Understanding
19.	Define priority encoder.		CO4	BTL 1	Remembering
20.	State the uses of encoder.		CO4	BTL 1	Remembering
21	Mention the applications of Decoder.		CO4	BTL 2	Understanding
22	Examine the logic diagram of 2 to 4 decoder.		CO4	BTL 2	Understanding
23	Implement the Boolean function $F=\Sigma m (1, 2, 3, 7)$ using 3:8 decod	ler.	CO4	BTL 2	Understanding
24	How to design a 1-bit comparator using basic gates.		CO4	BTL 2	Understanding
	PART- B				
1.	(i)Explain the design procedure for combinational circuits.	(8)	CO4	BTL 3	Applying
	(ii) Write a note on Carry Look Ahead adders.	(8)			
2.	Write the truth table for full adder. reduce the equation using k-	(16)	CO4	BTL 3	Applying
	map and design full adder using logic gates.	(-)			
3.	Explain how full adder can be designed by using two half adder	(16)	CO4	BTL 3	Applying
	circuits with the circuit diagram.	Ì			
4.	Write a brief note on the following combinational circuits:	(8)	CO4	BTL 3	Applying
	(i) Half subtractor				

	(ii) Full subtractor	(8)			
5.	Explain the working of 4-bit parallel adder with necessary	(16)	CO4	BTL 3	Applying
6.	Construct a 4-bit BCD adder and with necessary illustrations.	(16)	CO4	BTL 3	Applying
7.	From the truth table derive the Boolean expression for 4:1 MUX and 8:1 MUX and implement using basic gates.	(16)	CO4	BTL 2	Understanding
8.	Implement the following Boolean function using 8X1 multiplexer. $F(A,B,C,D)=\overline{ABD}+ACD+\overline{BCD}+\overline{ACD}$	(16)	CO4	BTL 3	Applying
9.	Formulate the following Boolean function using 4 x 1 multiplexers. $F(A,B,C,D) = \Sigma (1,2,3,6,7,8,11,12,14)$	(16)	CO4	BTL 3	Applying
10.	Realize the function $F(w, x, y, z) = \Sigma m$ (1,4,6,7,8,9,10,11,15) using 4 to 1 Multiplexer.	(16)	CO4	BTL 4	Analyzing
11.	Describe about multiplexer and Simplify the following function using $8x1$ Mux F(A,B,C,D)= Σ m (0,2,6,10,11,12,13)+d (3,8,14).	(16)	CO4	BTL 3	Applying
12.	 (i) Draw and explain the working of 1:8 demultiplexer and realize it using basic gates? (ii) Implement the following functions using demultiplexer: F1(A,B,C)=Σm(0,3,7) F2(A,B,C)=Σm(1,2,5) 	(8)(8)	CO4	BTL 4	Analyzing
13.	Explain a 3X8 Priority encoder with truth table, Boolean expression and logic diagram.	(16)	CO4	BTL 4	Analyzing
14.	Design a logic circuit using 4x1 Multiplexer which has four inputs A, B, C, and D. The output X of the circuit is logic 1 if two or more inputs are logic 1.	(16)	CO4	BTL 4	Analyzing
15.	Obtain the circuit that implements an 8-to-3 binary encoder with neat diagram.	(16)	CO4	BTL 3	Applying
16.	Design a 2-bit magnitude comparator with three outputs: A>B, A=B and A <b.< td=""><td>(16)</td><td>CO4</td><td>BTL 2</td><td>Understanding</td></b.<>	(16)	CO4	BTL 2	Understanding
17.	With necessary diagrams, explain in detail about the working of a 4-bit look ahead carry adder. Also mention its advantages over conventional adder.	(16)	CO4	BTL 3	Applying

UNIT V SEQUENTIAL LOGIC CIRCUITS

Flip flops – SR, JK, T, D, Master/Slave FF, Triggering of FF, Analysis and design of clocked sequential circuits – state minimization, state assignment, circuit implementation. Counters, Ripple Counters, Ring Counters. Types of Registers, Serial In - Serial Out, Serial In - Parallel out, Parallel In - Serial Out, Parallel Out, Universal Shift Register.

	PART - A			
Q.	Questions	CO	BT	Competence

No				Level	
1.	List the classification of Sequential circuits.		CO5	BTL 2	Understanding
2.	Compare combinational and sequential circuits.		CO5	BTL 2	Understanding
3.	Define a flip-flop.		CO5	BTL 1	Remembering
4.	List the types of flip-flop.		CO5	BTL 2	Understanding
5.	Differentiate between latch and flip-flop.		CO5	BTL 2	Understanding
6.	Write the excitation table for JK Flip flop.		CO5	BTL 1	Remembering
7.	Draw the state transition diagrams of flip-flops.		CO5	BTL 2	Understanding
8.	Write the characteristic equation from the truth table of SR flip-flop.		CO5	BTL 2	Understanding
9.	Convert D flip-flop to T flip-flop.		CO5	BTL 2	Understanding
10.	Mention any two differences between the edge triggering and level triggering.		CO5	BTL 2	Understanding
11.	Obtain the characteristic equation for D flip-flop.		CO5	BTL 1	Remembering
12.	Interpret the significance of state assignment.		CO5	BTL 1	Remembering
13.	Draw the state diagram of Mod-10 counter.		CO5	BTL 2	Understanding
14.	Sketch the circuit diagram of ring Counter.		CO5	BTL 2	Understanding
15.	Identify the flip-flops required to build a binary counter that counts from 0 to 1023.		CO5	BTL 2	Understanding
16.	Examine the difference between Mealy and Moore state machines.		CO5	BTL 1	Remembering
17.	What is the minimum number of flip-flops needed to design a counter of Modulus 10?		CO5	BTL 1	Remembering
18.	List out the applications of shift registers.		CO5	BTL 2	Understanding
19.	Distinguish between synchronous sequential circuits and asynchronous sequential circuits.		CO5	BTL 2	Understanding
20.	Construct a NAND based logic diagram of JK FF.		CO5	BTL 1	Remembering
21	Define universal shift register.		CO5	BTL 1	Remembering
22	Name the types of shift registers.		CO5	BTL 1	Remembering
23	A J-K flip-flop with $J = 1$ and $K = 1$ has a 20 kHz clock input. Compute the Q output.		CO5	BTL 2	Understanding
24	Sketch the 4-bit Johnson counter.		CO5	BTL 2	Understanding
	PART- B				
1.	(i) Define Flip flop? Explain about the operations of different flip	(8)	CO5	BTL 3	Applying
	flops.				
	(ii) List the applications of Flip flop.	(8)			
2.	Explain about JK flip-flop with truth table, characteristic equation	(16)	CO5	BTL 3	Applying
	and input & output waveforms.				
3.	Realize SR flip-flop using D flip-flop and JK flip-flop.	(16)	CO5	BTL 3	Applying
4.	(i) Explain the steps for the design of clocked synchronous	(8)	CO5	BTL 3	Applying
	sequential circuit. (ii) Obtain the reduced state table for the given tabulation.	(8)			
5.	Describe the functions with the state diagram and characteristics equation of T FF.	(16)	CO5	BTL 3	Applying

6.	Examine a state table, characteristic table and an excitation table for SR Flip Flop.	(16)	CO5	BTL 4	Analyzing
7.	Design a clocked sequential machine using T flip-flops for the following state diagram. Use state reduction if possible. Also use straight binary state assignment.	(16)	CO5	BTL 4	Analyzing
8.	Analyze the design procedure of a MOD-5 synchronous counter using JK flip-flops and implement it.	(16)	05	BILS	Applying
9.	With the D flip-flop, design a synchronous counter which counts in the sequence 000,001,010,011,100,101,110,111,000.	(16)	CO5	BTL 4	Analyzing
10.	Using SR flip flops, design a counter which counts in the following sequence 000, 111, 1101,100,011,010,001, 000,	(16)	CO5	BTL 4	Analyzing
11.	Analyze a counter to count the sequence 0,1,2,4,5,6 using SR FFs.	(16)	CO5	BTL 3	Applying
12.	Implement a J-K counter for the states 3, 4, 6, 7 and 3.	(16)	CO5	BTL 3	Applying
13.	With the neat block diagram explain the operation of universal shift register.	(16)	CO5	BTL 4	Analyzing
14.	Explain in detail about the working of mod-3 counter with neat diagram.	(16)	CO5	BTL 3	Applying
15.	Describe about the operation of 4-bit ring counter with waveforms.	(16)	CO5	BTL 3	Applying
16.	Construct the design of a synchronous decade counter using D flip-flop.	(16)	CO5	BTL 4	Analyzing

17.	Analyze a synchronous sequential circuit using JK Flip-flop for	(16)	CO5	BTL 4	Analyzing
	the given state diagram.				
			<u> </u>		