SRM VALLIAMMAI ENGINEERING COLLEGE

(An Autonomous Institution)

SRM Nagar, Kattankulathur – 603 203

DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK

IV SEMESTER ME3463 – STRENGTH OF MATERIALS Regulation – 2023 Academic Year 2024 – 25 (EVEN SEMESTER)

Prepared by

Dr. R. SRINIVASAN, M.E., Ph.D. Assistant Professor (Sr.G) Department of Mechanical Engineering

SRM VALLIAMMAI ENGINEERING COLLEGE (An Autonomous Institution) SRM Nagar, Kattankulathur – 603 203. DEPARTMENT OF MECHANICAL ENGINEERING

SUBJECT : ME3463 – STRENGTH OF MATERIALS YEAR/SEM: II/IV

UNIT-I STRESS, STRAIN AND DEFORMATION OF SOLIDS

Rigid bodies and deformable solids – Tension, Compression and Shear Stresses – Deformation of simple and compound bars – Thermal stresses – Elastic constants – Volumetric strains –Stresses on inclined planes – principal stresses and strains and principal planes – Mohr's circle of stress.

Sl.	Questions	BTL	Compliance
No			
	PART-A (2 Marks)		
1	Define stiffness.	BT1	Remembering
2	Describe stress and strain.	BT2	Understanding
3	Discriminate simple stress and compound stress.	BT2	Understanding
4	Classify the types of stress and strain.	BT1	Remembering
5	Discriminate shear stress and shear strain.	BT2	Understand
6	Define Hooke's law.	BT1	Remembering
7	Describe about volumetric strain.	BT2	Understanding
8	Describe Young's modulus and Bulk modulus with their expression.	BT1	Remembering
9	List the types of elastic constants.	BT1	Remembering
10	Discriminate longitudinal strain and lateral strain.	BT2	Understanding
11	Formulate the expression for Young's modulus and Bulk modulus.	BT2	Understanding
12	Formulate the expression for Young's modulus and shear modulus.	BT2	Understanding
13	Define Poisson's ratio.	BT1	Remembering
14	Define principal stress and principal strain.	BT1	Remembering
15	What do you understand by a compound bar?	BT1	Remembering
16	Define strain energy density.	BT1	Remembering
17	What do you understand about obliquity?	BT1	Remembering
18	Define factor of safety.	BT1	Remembering
19	Write the expression for volumetric strain of a rectangular bar subjected to	BT2	Understanding
	axial load.		
20	Define Resilience.	BT1	Remembering

21	Write the expression for volumetric strain of a cylindrical rod subjected to axial load.	BT2	Understand
22	Describe about Proof Resilience.	BT1	Remembering
23	Expression for strain energy stored in a body when the load is applied gradually.	BT2	Understanding
24	Expression for strain energy stored in a body when the load is applied	BT2	Understanding
24	suddenly.	DIZ	Onderstanding
25	What do you mean by the term "necking"?	BT1	Remembering
	PART-B (16 Marks)		
1	A hollow cylinder 1.5 m long has an outside diameter of 45 mm and inside	BTL5	Evaluate
	diameter of 25 mm. If the cylinder is carrying a load of 20 kN. Find the stress		
	in the cylinder and deformation of the cylinder. Take Young's modulus of		
	the cylinder material is 100 GPa.		
2	A steel bar 900 mm long and two ends are 40 mm and 30 mm in diameter	BTL5	Evaluate
	with the length of each rod is 200 mm. The middle portion of the bar is 15		
	mm diameter and 500 mm long. If the bar is subjected to an axial tensile load		
	of 15 kN. Determine the following SRM		
	1. Stress in each section		
	2. Total extension		
3	A round bar as shown in Figure -1 is subjected to an axial tensile load of	BTL5	Evaluate
	100 kN. Determine the diameter of the first part if the shear stress in the in		
	the first part is 100 MN/m ² and find total elongation of the bar. Take young's		
	modulus of the material is 290 GPa.		
	$100 \text{ kN} \checkmark \boxed{D_1} \qquad 10 \text{ cm} \qquad 8 \text{ cm} \rightarrow 100 \text{ kN}$ $10 \text{ cm} \qquad 15 \text{ cm} \qquad 15 \text{ cm}$		
	Figure -1		
4	A round bar as shown in Figure -2 is subjected to an axial tensile load of	BTL5	Evaluate
	150 kN. Determine the diameter of the middle portion if the stress is limited		
	to 160 MN/mm ² . Find the length of middle portion, if the total elongation of		
	the bar is 0.25 mm. Take Young's modulus of the material is 200 GN/m^2 .		

	$150 \text{ kN} \downarrow 100 \text{ mm} D_1 \downarrow D_2 \downarrow D_3 \downarrow 100 \text{ mm} 150 \text{ kN}$ $\downarrow L_1 \downarrow L_2 \downarrow L_3 \downarrow 150 \text{ mm} \downarrow 150 \text{ kN}$ Figure -2		
5	A steel rod 50 mm diameter is subjected to a force as shown in Figure-3. Find the elongation of the rod and take $E= 2 \times 10^5 \text{ N/mm}^2$. $\boxed{\begin{array}{c} A & B & C & D \\ 12 N & 2 N & 4 N & 10 N \\ 1500 \text{ mm} & 1000 \text{ mm} & 1500 \text{ mm} \end{array}}$ Figure-3.SRM	BTL5	Evaluate
6	A member ABCD is subjected to loading as shown in Figure-4. Determine the total elongation of the material and the value of young's modulus of material is 2 x 10^5 N/mm ² . A B C D 120 kN 900 mm ² 50 kN 150 kN 625 mm ² 220 kN 400 mm ² 750 mm 1500 mm 1000 mm 750 mm Figure-4	BTL5	Evaluate
7	A bar is subjected to point load as shown in Figure-5. Calculate the force P2 and the total elongation of the bar. Take the value of load acting P1 = 60 kN, P3 = 500 kN and P4 = 150 kN and modulus of elasticity is $2.1 \times 10^5 \text{ N/mm}^2$.	BTL5	Evaluate

B C	
$P_{1} \leftarrow \begin{array}{c} A \\ 650 \text{ mm}^{2} \\ \hline \end{array} \begin{array}{c} P_{2} \\ P_{3} \\ \hline \end{array} \begin{array}{c} 1400 \text{ mm}^{2} \\ \hline \end{array} \begin{array}{c} P_{4} \\ \hline \end{array} \begin{array}{c} 140 \text{ cm} \\ \hline \end{array} \begin{array}{c} 75 \text{ cm} \\ \hline \end{array} \begin{array}{c} 100 \text{ cm} \\ \hline \end{array} \end{array}$	Fachata
8 Three pillars, two of aluminium and one of steel support a rigid platform of BTL5	Evaluate
250 kN as shown in Figure-6. If area of each aluminium pillar is 1200 mm^2	
and that of steel pillar is 1000 mm2, find the stresses developed in each pillar.	
Take $E_s = 2 \times 10^5 \text{ N/mm}^2$ and $E_a = 1 \times 10^6 \text{ N/mm}^2$.	
Figure-6	
9 A steel rod of 3 cm diameter is enclosed centrally in hallow copper tube of BTL5	Evaluate
external and internal diameter of 5 cm and 4 cm respectively. The composite	
bar is subjected to an axial pull of 45000 N, if the length of each bar is equal	
to 15 cm. Take the value of $Es = 2.1 \times 10^5 \text{ N/mm}^2$ and $Ec = 1.1 \times 10^5 \text{ M/mm}^2$ Determine the following	
1. The stress in the rod and tube 2. Load carried by each bar.	
10A compound tube which consists of a steel of 140 mm internal diameter andBTL5	Evaluate
5 mm thickness and an outer brass tube of 150 mm internal diameter and 5	
mm thick. The two tubes are of same length. Compound tube carries an axial	
load of 600 kN. Find the stresses carried by each tube and amount of	
load of 600 kN. Find the stresses carried by each tube and amount of shortening. Length of all the tube is 120 mm. Take $E_s=2 \times 10^5 \text{ N/mm}^2$	
shortening. Length of all the tube is 120 mm. Take $E_s=2 \times 10^5 \text{ N/mm}^2$	Evaluate

	column is carrying a load of 1000 kN. Find the stresses in the concrete and		
	steel bars. Take the value of E for steel is $210 \times 10^3 \text{ N/mm}^2$ and for concrete		
	is 14 x 10 ³ N/mm ² .		
12	A circular rod is subjected to a pull of 60 kN. The measured extension on a	BTL5	Evaluate
	guage length of 180 mm is 0.09 mm and the change in diameter is 0.00276		
	mm. Calculate the Poisson's ration and the value of other moduli if young's		
	modulus is 200 kN/mm ² .		
13	A rectangular block of material is subjected to a tensile stress with the value	BTL5	Evaluate
	of 110 N/mm ² on one plane and tensile of 47 N/mm ² on a plane at right		
	angles to the former. Each of the above stresses is accompanies by a shear		
	stress of 63 N/mm ² . Determine the principal stresses and maximum shear		
	stress.		
14	The stresses at a point in a strained material in X and Y directional plane is	BTL5	Evaluate
	200 N/mm ² and -150 N/mm ² and the value of q is 800 N/mm ² . Find the		
	principal plane and principal stresses using graphical method and verify with		
	analytical method.		
15	Two planes AB and AC which are right angles to carrying shear stress of	BTL5	Evaluate
	intensity 17.5 N/mm ² while these planes carrying a tensile stress with the		
	value of 70 N/mm ² and a compressive stress of 35 N/mm ² respectively. Find		
	principal plane, principal stresses, maximum shear stresses and planes on		
	which act.		
16	A steel rod of 30 mm diameter passes centrally through a copper tube of 60	BTL5	Evaluate
	mm external diameter and 50 mm internal diameter. The tube is closed at		
	each end by rigid plates of negligible thickness. The nuts are tightened lightly		
	home on the projecting parts of the rod. If the temperature of the assembly is		
	raised by 60°C, calculate the stress developed in copper and steel. Take E for		
	steel and copper as 200 GN/ m^2 and 100 GN/m² and α for steel and copper		
	as 12 x 10-6 per °C and 18 x 10-6 per °C.		
17	A specimen of steel 20 mm diameter with a gauge length of 200 mm is tested	BTL5	Evaluate
	to destruction. It has an extension of 0.25 mm under a load of 80 kN and the		
	load at elastic limit is 102 kN. The maximum load is 130 kN. The total		
	extension at fracture is 56 mm and diameter at neck is 15 mm. Find (i) The		
	stress at elastic limit. (ii) Young's modulus. (iii) Percentage elongation.		
	(iv) Percentage reduction in area. (v) Ultimate tensile stress		
18	At a point in a strained material, the principal stresses are 100 N/mm ² tensile	BTL5	Evaluate
			l

and 60 N/mm^2 compressive. Determine normal stress, shear stress and	
resultant stresses on a plane inclined at 50 to the axis of major principal	
stress.	

UNIT-II TRANSVERSE LOADING ON BEAMS AND STRESSES IN BEAMS

Beams –types of beams- types transverse loading on beams – Shear force and bending moment in beams – Cantilevers – Simply supported beams and over hanging beams. Theory of simple bending– bending stress distribution – Load carrying capacity – Proportioning of sections – Flitched beams –Shear stress distribution.

Sl.	Questions	BTL	Compliance
No			
	PART-A (2 Marks)		
1	Classify beams based on the supports.	BTL2	Understanding
2	Name the various types of loading.	BTL1	Remembering
3	Define shear force and bending moment.	BTL2	Understanding
4	Describe the term point of contra flexure.	BTL2	Understanding
5	Describe the theory of simple bending.	BTL2	Understanding
6	Define flitched beam.	BTL1	Remembering
7	Discriminate overhanging beam with continuous beam.	BTL2	Understanding
8	Compare overhanging beam with continuous beam.	BTL2	Understanding
9	Describe section modulus.	BTL2	Understanding
10	Describe about transverse loading on beams. RM	BTL2	Understanding
11	What is meant by sagging in bending moment?	BTL1	Remembering
12	What is meant by hogging in bending moment?	BTL1	Remembering
13	A cantilever beam of 4m length is subjected to a UDL of 20 kN/m over its	BTL3	Apply
	entire length.		
14	A cantilever beam of 6m length is subjected to a point load of 10 kN/m at	BTL3	Apply
	free end. Find the maximum bending moment.		
15	A simply supported beam of 6m length is subjected to a UDL load of 10	BTL3	Apply
	kN/m over its entire length. Find the maximum bending moment.		
16	Sketch the BM diagram of a cantilever beam subjected to UDL over the	BTL1	Remembering
	entire span.		
17	Sketch the bending stress distribution and shear stress distribution for a	BTL3	Apply
	beam of rectangular cross section.		
18	Write down relations for maximum shear force and bending moment for	BTL1	Remembering
	cantilever beam subjected to UDL over entire span.		
19	Write down bending moment equation.	BTL1	Remembering
20	List out the assumption made for theory of bending.	BTL1	Remembering
21	Find the section modulus of circular section of diameter 30 mm.	BTL3	Apply

22	Write the equation of section modulus for circular and hollow circular	BTL1	Remembering
	sections?		
23	Draw the BMD for a simply supported beam of span L carrying uniformly	BTL3	Apply
-	varying load from 0 to "W" KN / m for the entire span.	_	IT J
24	Illustrate the shear stress distribution in a solid circular section.	BTL3	Apply
25	What do you mean by beam of uniform strength?	BTL1	Remembering
	PART-B (16 Marks)		
1	A cantilever beam length of length 2 m carries the point load of 1 kN at its	BTL5	Evaluate
	free end and another load of 2 kN at 1 m from free end. Draw SF and BM		
	diagrams for the cantilever beam.		
2	A cantilever beam length of length 2 m carries a Uniformly Distributed	BTL5	Evaluate
	Load (UDL) of 3 kN/m in the entire span. Draw SF and BM diagrams for		
	the cantilever beam.		
3	A cantilever beam length of length 4 m carries a Uniformly Distributed	BTL5	Evaluate
	Load (UDL) of 3 kN/m run over the entire span and two point loads of 4 kN		
	and 2.5 kN are placed 1m and 2 m respectively from the fixed end. Draw		
	SF and BM diagrams for the cantilever beam.		
4	A cantilever beam length of length 3 m carries a Uniformly Distributed	BTL5	Evaluate
	Load (UDL) of 12 kN/m run over the length of 1.5 m from the free end. It		
	is also carrying a point load of 15 kN at free end and 8 kN at 1 m from the		
	fixed end. Draw SF and BM diagrams for the cantilever beam.		
5	A cantilever beam of length of 5 m length is loaded by a point load of 2 kN,	BTL5	Evaluate
	2 kN and 3 kN at 1.5 m, 3 m and 5m respectively from the fixed end. It is		
	also carrying UDL of 3 kN/m to the length of 1.5 m after the first point load		
	from the left end. Draw SF and BM diagrams for the cantilever beam.		
6	A cantilever beam length of length 3 m carries a Uniformly varying Load	BTL5	Evaluate
	(VDL) of zero at the free end to 1 kN/m at the fixed end. Draw SF and BM		
	diagrams for the cantilever beam.		
7	Drive the expression of SSB and BMD for a cantilever beam subjected to	BTL3	Apply
	Uniformly Distributed Load to the entire span.		
8	Drive the expression of SSB and BMD for a simply supported beam	BTL3	Apply
	subjected to Uniformly Distributed Load to the entire span.		
9	A simply supported beam of 5 m length carries point loads of 3 kN, 4.5 kN	BTL5	Evaluate
	and 7 kN at 1 m, 2.5 m and 3.5 m respectively from the left hand supported.		
	Construct SF and BM diagrams.		
	1		l

10	A simply supported beam length of length 8 m carries a Uniformly	BTL5	Evaluate
	Distributed Load (UDL) of 4 kN/m run over entire length and carrying a		
	point load of 2 kN and 5 kN at 3 and 6 m respectively from the right support.		
	Draw SF and BM diagrams of simply supported beam.		
11	A simply supported beam length of length 4 m carries a UDL of 10 kN/m	BTL5	Evaluate
	run over the right hand half of the span and carrying a point load of 22 kN		
	at a distance of 1 m from the left support. Draw SF and BM diagrams of		
	simply supported beam.		
12	A simply supported beam length of length 7 m carries a UDL of 12 kN/m	BTL5	Evaluate
	run over 3 m and 1.5 m away from the right. In addition, it has a load 8 kN		
	at 2.5 m from the left hand support. Draw SF and BM diagrams of simply		
	supported beam.		
13	A simply supported beam length of length 8 m carries a UDL of 1500 N/m	BTL5	Evaluate
	run over entire span and three concentrated load of 1000 N, 2000 N and		
	4000 N acting at right quarter, center point and right quarter respectively.		
	Draw SF and BM diagrams of simply supported beam.		
14	A simply supported beam length of length 8 m carries a VDL of 1 kN/m	BTL5	Evaluate
	from the left hand support and 2 kN/m to the right hand support. Construct		
	the shear force diagram and bending moment diagram.		
15	A beam of 12 m long is supported at two points of 2 m from each end, so	BTL5	Evaluate
	that there are two equal overhanging portions. It carries a concentrated loads		
	of 4 kN, 3 kN and 5 kN at 1 m, 8 m and 12 m respectively from the left end.		
	Construct the shear force diagram and bending moment diagram.		
16	A beam of 8 m long is supported at left end and at a point of 6 m from right	BTL5	Evaluate
	end. It carries two concentrated loads of 15 kN and 18 kN, in which one is		
	at the free end and other is at 3 m from the left support. Construct the shear		
	force diagram and bending moment diagram.		
17	Construct the shear force diagram and bending moment diagram for simply	BTL5	Evaluate
	supported beam length of 9 m, subjected to UDL of 10 kN/m for 4 m which		
	is 2 m away from the left support.		
18	A simply supported beam which is having rectangular in cross section of 60	BTL5	Evaluate
	x 35 mm and 3m long carrying a load of 5kN at mid-span. Determine the		
	x 55 min and 5m long carrying a load of 5kt at mid-span. Determine the		

UNIT-III TORSION

Torsion formulation stresses and deformation in circular and hollows shafts – Stepped shafts– Deflection in shafts fixed at both ends – Stresses in helical springs – Deflection of helical springs, carriage springs-Strain energy.

Sl.No	Questions	BTL	Compliance
	PART-A (2 Marks)		
1	Summarize the assumption for theory of torsion.	BTL2	Understanding
2	A solid shaft is to transmit a torque of 25 kN-m and the shear stress is 60	BTL3	Apply
	MPa. Find the diameter of shaft.		
3	Describe torsion.	BTL2	Understanding
4	What is the assumption made in torsion equation?	BTL1	Remembering
5	Write the torsional equation.	BTL2	Understanding
6	Write down the expression for the toque transmitted by hallow shaft.	BTL1	Remembering
7	Define polar modulus.	BTL1	Remembering
8	Why hallow circular shafts are preferred when compared to solid circular	BTL2	Understanding
	shaft?		
9	Define torsional rigidity. SRM	BTL1	Remembering
10	Calculate the maximum torque that a shaft of 125mm diameter can	BTL3	Apply
	transmit, if the maximum angle of twist is 1 degree for a length of 1.5 m		
	and C= 70 x 10^3 N/mm ² .		
11	Write down the equation the equation for a maximum shear stress of a	BTL3	Apply
	solid circular section in a diameter "D" when subjected to torque "T".		
12	Calculate the minimum diameter of shaft required to transmit a torque of	BTL3	Apply
	29820 N-m if the maximum shear stress is not to exceed 45 N/mm ² .		
13	What is the power transmitted by circular shaft subjected to a torque of	BTL3	Apply
	700 kN-m at 110 rpm.		
14	Define spring and mention the types of springs.	BTL1	Remembering
15	Define stiffness.	BTL1	Remembering
16	Write the stiffness equation of a closed coiled helical spring subjected to	BTL1	Remembering
	an axial load?		
17	Discriminate closed and open coiled helical springs.	BTL2	Understanding
18	Give shear stress and deflection relation for closed coiled helical spring.	BTL1	Remembering
19	What is meant by spring constant or spring index.	BTL1	Remembering
20	The stiffness of spring is 10 N/mm. What is the axial deformation in the	BTL1	Remembering

	spring when load is 50 N is acting.		
21	What kind of stress introduced when an axial load acts on an open coiled	BTL1	Remembering
	spring?		6
22	Write down the equation for shear strain energy of a closed coiled	BTL1	Remembering
	springs?		
23	What is the value of maximum shear stress in a closed coiled helical	BTL1	Remembering
	spring subjected to axial force "W"?		
24	List the stresses induced on springs subjected to load.	BTL2	Understanding
25	Summarize the application of helical spring.	BTL2	Understanding
	PART-B (16 Marks)		
1	A hallow shaft is to transmit 200 kW at 80 rpm. If the shear is not to	BTL5	Evaluate
	exceed 70 MN/m^2 and internal diameter is 0.5 of the external diameters.		
	Find the external and internal diameters assuming that the maximum		
	torque is 1.6 times the mean.		
2	A solid shaft diameter of 100 mm is required to transmit 150 kW at 120	BTL5	Evaluate
	rpm. If the length of the shaft is 4 m and modulus of rigidity for the shaft		
	is 75 GPa. Finf the angle of twi <mark>st. SRM</mark>		
3	A hallow shaft of diameter ratio 3/8 is required to transmit 588 kW at	BTL5	Evaluate
	110 rpm. The maximum torque exceeds the mean by 20%. The shear		
	stress is limited to 63 N/mm ² and the twist is 0.0081 rad. Calculate the		
	external diameter required to satisfying both conditions. Take the length		
	and rigidity is 3 m and 84 GPa respectively.		
4	A hallow shaft of 120 mm external diameter and 80 mm internal	BTL5	Evaluate
	diameter is required to transmit 200 kW at 120 rpm. If the angle of twist		
	is not to exceed 3°, find the length of the shaft and take C=80 GPa.		
5	A solid shaft is to transmit 300 kW at 80 rpm. If the shear stress is not to	BTL5	Evaluate
	exceed 50 MN/m^2 and diameter ration is 3/7. Find the external and		
	internal diameter if the twist is 1.2° and length is 2 m. Assuming		
	maximum torque is 20% greater than mean and value of C is 80 GN/m^2 .		
6	A solid shaft is to transmit 75 kW at 200 rpm. Find the external and	BTL5	Evaluate
	internal diameter if the twist is 1° for the shaft length of 2 m. if the value		
	of shear stress not to exceed 50 N/mm ² and value of C is 80 GN/m ² .		
7	A hallow shaft having internal diameter is 50% of its external diameter	BTL5	Evaluate
	is transmit 600 kW power at 150 rpm. Find the external diameter of the		
	shaft if shear stress is 65 N/m2 and angle of twist is 1.4° for the shaft		

	length of 3 m. Assume maximum torque is 1.2 times the mean torque		
	and modulus of rigidity is $1 \times 10^5 \text{ N/mm}^2$.		
8	A hallow shaft is to transmit 240 300 kW at 110 rpm. If the shear stress	BTL5	Evaluate
	is not to exceed 70 MN/m^2 , find the diameter of the shaft. If this shaft is		
	replaced by hallow shaft whose internal diameter is 0.6 times of outer		
	diameter. Determine		
	1. Diameter of the hallow shaft		
	2. Percentage of saving material, the maximum shear stress being		
	same.		
9	A hallow shaft of 20 mm thick transmits 300 kW at 200 rpm. Determine	BTL5	Evaluate
	the inner diameter of the shaft if the shear strain is 8.6×10^{-4} and take		
	C=80 GPa.		
10	Drive the expression of strain energy stored in a closed coiled helical	BTL3	Apply
	spring subjected to axial load.		
11	A closed coiled helical spring of 8 mm diameter wire with 12 coils of a	BTL5	Evaluate
	mean diameter 100 mm carries an axial load of 400 N. Determine the		
	following SRM		
	(1) Shear stress induced		
	(2) Deflection		
	(3) Strain energy stored in a sp <mark>ring.</mark>		
12	A closed coiled helical spring of round steel wire of 100 mm in diameter	BTL5	Evaluate
	has a mean radius of 120 mm. The spring has 10 complete turns and is		
	subjected to an axial load of 200 N. Determine the following		
	(1) Maximum Shear stress induced in the wire		
	(2) Deflection of the spring		
	(3) Stiffness of the spring. Take the value of $G = 80 \text{ kN/mm}^2$.		
13	A closed coiled helical spring made of steel wire is required to carry a	BTL5	Evaluate
	load of 800 N. Determine the wire diameter if the stiffness of the spring		
	is 10 N/mm and the diameter of helical spring is 80 mm. Calculate the		
	number of turns required in the spring. Give value for G for the steel is		
	80 GPa and allowable stress is 200 N/mm ² .		
14	A helical spring is required to carry a total axial force of 50 N and to	BTL5	Evaluate
	have a stiffness of 0.4 N/mm. Design the spring using 6 mm in diameter		
	of mild steel bar assuming its shear strength and modulus of rigidity as		
	96 N/mm ² and 80 kN/mm ²		

15	A helical spring in which the mean diameter of the coil is 8 times the	BTL5	Evaluate
	wire diameter is to be designed to absorb 0.2 kN-m of energy with an		
	extension of 100 mm. The maximum shear stress is not to exceed 125		
	$N\!/mm^2$. Determine the mean diameter of the spring, diameter of wire		
	and the total number of turns. Also find the load with which an extension		
	of 40 mm could be produced in the spring. Assume $G = 84 \text{ kN/mm}^2$.		
16	A leaf spring of semi-elliptical type has 10 plates, each 60 mm wide and	BTL5	Evaluate
	5 mm thick. The longest plate 700 mm long. Find the load acting on the		
	spring so that the bending stress shall not exceed 150 N/mm ² and the		
	central deflection shall not exceed 10 mm. Take $E = 2 \times 10^5 \text{ N/mm}^2$.		
17	A carriage steel spring of semi-elliptical type has 100 mm long and width	BTL5	Evaluate
	of 50 mm. It carries a central load of 5 kN. If the maximum deflection		
	of the spring not exceed 50 mm and maximum stress should not exceed		
	150 N/mm ² . Calculate the following GINEEP		
	(1) Thickness of the plate		
	(2) Number of plates		
18	A leaf spring is made of 12 steel plates of 50 mm wide and 5 mm thick.	BTL5	Evaluate
	It carries a load of 4 kN at the centre. If the bending stress is limited to		
	140 N/mm ² , Determine the following		
	(1) Length of the spring		
	(2) Deflection at the centre of the spring.		

UNIT IV DEFLECTION OF BEAMS

Double Integration method – Macaulay's method – Area moment method for computation of slopes and deflections in beams - Conjugate beam and strain energy – Maxwell's reciprocal theorems.

Sl.No	Questions	BTL	Compliance
	PART-A (2 Marks)		
1	List the methods used to determine the deflection of beams.	BTL1	Remembering
2	Write the expression of slope of beam using double integration method.	BTL1	Remembering
3	Write the expression of deflection of beam using double integration method.	BTL1	Remembering
4	Classify the types of loading in a beam.	BTL2	Understanding
5	Describe Macaulay's method.	BTL2	Understanding
6	List the disadvantage of double integration method.	BTL1	Remembering
7	Define conjugate beam method	BTL1	Remembering
8	Define modulus of resilience.	BTL1	Remembering
9	State the two theorems in the moment area method	BTL2	Understanding
10	Define proof resilience.		
11	Why moment area method is more useful when compared with double integration?	BTL2	Understanding
12	Define strain energy.	BTL1	Remembering
13	A cantilever beam of 2 m is carrying a point load of 20 kN at its free end. Measure the slope at the free end. Assume $EI = 12 \times 10^3 \text{ kN-m}^2$.		
14	Compare the moment area method with conjugate beam method for finding the deflection of a simply supported beam with UDL over the entire span.	BTL2	Understanding
15	Define Moher's theorem.	BTL1	Remembering
16	Describe two theorems in the moment area method.	BTL2	Understanding
17	Write the maximum value of deflection for a simply supported beam of constant EI, span L carrying central concentrated load "W".	BTL2	Understanding
18	Write the value of slope at the free end and of a cantilever beam of constant EI and span L carrying central load "W" at free end.	BTL2	Understanding
19	Describe about double integration method.		
20	What is the area of BMD of a cantilever carrying UDL of W/m for the full span of 'L'.	BTL2	Understanding
21	Define Maxwell's reciprocal theorem.	BTL2	Understanding

22	Express the units of slope and deflection.	BTL2	Understanding
23	Write the expression for stress induced in a body when impact load is	BTL1	Remembering
	applied.		
24	Describe the theorem for conjugate beam method.	BTL2	Understanding
25	What is the relation between slope, deflection, and radius of curvature of	BTL1	Remembering
	a beam?		
	PART-B (16 Marks)		
1	Drive the expression of slope and deflection for cantilever beam	BTL3	Apply
	subjected to point load at the free end.		
2	A cantilever beam of 6 m long carries two point loads 15 kN at free end	BTL5	Evaluate
	and 25 kN at 2.5 m from the free end. Determine the following by double		
	integration method.		
	1. Slope at the free end		
	2. Deflection at the free end		
3	A cantilever beam of 6 m long carries two point loads 15 kN at free end	BTL5	Evaluate
	and 25 kN at 2.5 m from the free end. Determine the following by		
	Macaulay's method.		
	1. Slope at the free end 2. Deflection at the free end		
4	A cantilever beam of 4 m long carries a UDL of 8 kN/m length over the	BTL5	Evaluate
	entire length. If the section is rectangular of 150 x 260 mm, find the		
	deflection and slope at the free end by moment area method. Take the		
	value of $E = 2.1 \times 10^5 \text{ N/mm}^2$.		
5	A cantilever beam of 4 m long carries a UDL of 8 kN/m length over the	BTL5	Evaluate
	entire length. If the section is rectangular of 150 x 260 mm, find the		
	deflection and slope at the free end by Macaulay's method. Take the		
	value of $E = 2.1 \times 10^5 \text{ N/mm}^2$.		
6	A cantilever projecting 3 m from a wall carries a UDL of 12 kN/m for a	BTL5	Evaluate
	length of 2 m from fixed end and a point load of 1.5 kN at the free end.		
	Find the deflection at the free end by double integration method. Take		
	the value of $E = 2 \times 10^5 \text{ N/mm}^2$ and the value of $I = 1 \times 10^8 \text{ mm}^4$.		
7	A cantilever projecting 3 m from a wall carries a UDL of 12 kN/m for a	BTL5	Evaluate
	length of 2 m from fixed end and a point load of 1.5 kN at the free end.		
	Find the deflection at the free end by Macaulay's method. Take the value		
	of $E = 2 \times 10^5 \text{ N/mm}^2$ and the value of $I = 1 \times 10^8 \text{ mm}^4$.		
8	A beam of simply supported beam of 6 m long supported at its end is	BTL5	Evaluate

	carrying a point load of 50 kN at its center. The moment of inertia of the		
	beam is equal 78 x 10^6 mm ⁴ . If E for the material is 2.1×10^5 N/mm ² .		
	Calculate the deformation at the center by double integration method.		
9	A beam of simply supported beam of 8 m long supported at its end is	BTL5	Evaluate
	carrying a point load of 5 kN at 6 m from left end of the beam. The		
	moment of inertia of the beam is equal $78 \times 10^6 \text{ mm}^4$. If E for the material		
	is 2.1×10^5 N/mm ² . Calculate the deformation by double integration		
	method.		
10	A beam of simply supported beam of 8 m long supported at its end is	BTL5	Evaluate
	carrying UDL of 15 kN/m over entire beam. The moment of inertia of		
	the beam is equal 2 x 10^9 mm ⁴ . If E for the material is $2x10^5$ N/mm ² .		
	Calculate the deformation at the center by Macaulay's method.		
11	A SSB of 8 m long carries point load 10 kN at its center. It also subjected	BTL5	Evaluate
	to a UDL of 1 kN/m over its entire span. Find deflection of beams by		
	Macaulay's method. Take the inertia of the beam is equal $200 \times 10^6 \text{ mm}^4$.		
	If E for the material is 200 kN/mm ²		
12	A cantilever beam of 4 m long carries a UDL of 8 kN/m length over the	BTL5	Evaluate
	entire length. If the section is rectangular of 150 x 260 mm, find the		
	deflection and slope at the free end by double integration method. Take		
	the value of E = $2.1 \times 10^5 \text{ N/mm}^2$.		
13	A cantilever beam 7 m carries a UDL of 18 kN/m over a length of 3 m	BTL5	Evaluate
	from the free end along with a point load of 2 kN at 3 m from free end.		
	the free end. Find the deflection at the free end by Macaulay's method.		
	Take the value of $E = 2 \times 10^5 \text{ N/mm}^2$ and the value of $I = 1 \times 10^8 \text{ mm}^4$.		
14	A cantilever beam 7 m carries a UDL of 18 kN/m over a length of 3 m	BTL5	Evaluate
	from the free end along with a point load of 2 kN at 3 m from free end.		
	the free end. Find the deflection at the free end by double integration		
	method. Take the value of $E = 2 \times 10^5 \text{ N/mm}^2$ and $I = 1 \times 10^8 \text{ mm}^4$.		
15	A SSB span of 6 m long carries UDL of 5 kN/m over length of 3 m	BTL5	Evaluate
	extending from left end. Determine the deflection at mid-span by		
	Macaulay's method. Take $E = 2x10^5 \text{ N/mm}^2$ and $I = 6.2 \times 10^6 \text{ mm}^4$.		
16	A cantilever beam 4 m long carries a load of 50 kN at 2 m from the free	BTL5	Evaluate
	end, and load of W at the free end. If the deflection at free end is 25 mm,		
	calculate the magnitude of load W and slope at the free end. Take the		
	value of E= 200 kN/mm ² and I = 5 x 10^7 mm ⁴		

17	Drive the expression of slope and deflection for simply supported beam	BTL3	Apply
	subjected to point load at the center of beam.		
18	A simply supported beam of length 4m long is subjected with a point	BTL5	Evaluate
	load of 10 kN and 20 kN at distance of 1 m and 2 m from the left end		
	support. Find the slope at the supports, deflection under load and location		
	and magnitude of the maximum deflection by Macaulay's method. Take		
	$E=2 \times 10^{4} \text{ N/mm}^{2}.$		

UNIT V THIN CYLINDERS, SPHERES AND THICK CYLINDERS

Stresses in thin cylindrical shell due to internal pressure circumferential and longitudinal stresses and deformation in thin and thick cylinders – spherical shells subjected to internal pressure – Deformation in spherical shells – Lame's theorem.

Sl.No	Questions	BTL	Compliance	
PART-A (2 Marks)				
1	Define circumferential stress.	BTL2	Understanding	
2	Write the expression for maximum shear in a thin cylinder.	BTL1	Remembering	
3	Describe about longitudinal stress on thin cylinder.	BTL2	Understanding	
4	Write the expression for longitudinal stress in a thin cylinder subjected	BTL1	Remembering	
	to a uniform internal fluid pressure.			
5	List the various methods of reducing the hoop stresses.	BTL1	Remembering	
6	Formulate the mathematical expressions of Lame's theorem.	BTL2	Understanding	
7	Differentiate the thick cylinder from thin cylinder.	BTL2	Understanding	
8	Give the expression for hoop stress for thin spherical shells.	BTL1	Remembering	
9	A cylindrical shell 3m long, 1m in diameter and 10 mm thick is subjected	BTL3	Apply	
	to an internal pressure of 2 MPa. Calculate the change in dimensions of			
	the shell. $E = 2 \times 10^5 \text{ N/mm}^2$.			
10	Write the equation for the change in diameter and length of a thin	BTL1	Remembering	
	cylinder shell, when subjected to an internal pressure.			
11	Assess the thickness of the pipe due to an internal pressure of 10 N/mm^2 ,	BTL3	Apply	
	if the permissible stress is 120 N/mm ² . The diameter of pipe is 750 mm.			
12	For the thin cylinder, write down the equation for strain along the	BTL1	Remembering	
	circumferential direction.			
13	For the thin cylinder, write down the equation for strain along the	BTL1	Remembering	
	longitudinal direction.			
14	For the thin cylinder, write down the expression for volumetric strain.	BTL1	Remembering	
15	Write the circumferential strain in thin spherical shell.	BTL1	Remembering	
16	In a thin cylindrical shell if hoop strain is 0.2×10^{-3} and longitudinal	BTL3	Apply	
	strain is 0.05×10^{-3} , find out volumetric strain.			
17	Distinguish between cylindrical shell and spherical shell.	BTL2	Understanding	
18	Describe the effect of riveting a thin cylindrical shell.	BTL2	Understanding	
19	What do you understand by the term wire winding of thin cylinder?	BTL1	Remembering	
20	Summarize the assumptions of lame's theory.	BTL2	Understanding	

21	Write Lame's equation to find out stresses in a thick cylinder.	BTL1	Remembering
22	In a thick cylinder will the radial stress vary over the thickness of wall	BTL2	Understanding
	and justify.		
23	Define compound cylinder.	BTL1	Remembering
24	List the stresses developed in thick cylinder.	BTL1	Remembering
25	A cylindrical pipe of diameter 1.5 m and thickness 1.5 cm is subjected	BTL3	Apply
	to an internal fluid pressure of 1.2 N/mm ² . Calculate the longitudinal		
	stress developed in the pipe.		
	PART-B (16 Marks)		
1	Derive the expressions for change in dimensions of a thin cylinder due	BTL3	Apply
	to internal pressure.		
2	A hallow cylindrical drum 750 mm in diameter and 2.5 m long has a	BTL5	Evaluate
	shell thickness of 10 mm. If the drum is subjected to an internal pressure		
	of 2.6 N/mm ² . Determine (i) Change in diameter (ii) Change in length		
	(iii) Change in volume. Take $E = 2.1 \times 10^5 \text{ N/mm}^2$ and poison's ratio is		
	0.3. Also calculate change in volume.		
3	A thin cylindrical shell 3 m long has 1m internal diameter and 15 mm	BTL5	Evaluate
	metal thickness. Calculate the circumferential and longitudinal stresses		
	induced and the change in the dimensions of the shell, if it is subjected		
	to an internal pressure of 1.5 N/mm ² . Take E = 2×10^5 N/mm ² and		
	poison's ratio = 0.3. Also calculate change in volume.		
4	A cylindrical shell of 1 m long, 150 mm internal diameter having	BTL5	Evaluate
	thickness of metal as 7 mm is filled with fluid at atmospheric pressure.		
	If an additional 25 cc of fluid is pumped into the cylinder, fluid pressure		
	exerted by the fluid on the cylinder shell and resulting hoop stress.		
	Assume $E = 2 \times 10^5 \text{ N/mm}^2$ and poison's ratio is 0.27.		
5	A cylindrical shell of 2 m long, 600 mm internal diameter having	BTL5	Evaluate
	thickness of 12 mm. If it carries a fluid at a pressure of 3 N/mm ² .		
	Determine the longitudinal and hoop stresses in the wall and also		
	determine change in diameter, change in length and change in volume.		
	Assume $E = 200$ GPa and poison's ratio is 0.3.		
6	A thin cylindrical shell of 400 mm in internal diameter has shell	BTL5	Evaluate
	thickness of metal as 6 mm subjected to an internal pressure which		
	produce a strain of 0.0005 in diameter. Calculate the internal pressure		
	and corresponding longitudinal and hoop stresses. $E = 2.1 \times 10^5 \text{ N/mm}^2$		

	and poison's ratio is 0.26.		
-	-		
7	Derive the expressions for change in dimensions of spherical shell due to internal pressure.	BTL3	Apply
8	Explain briefly about thin spherical shell and derive the expression for	BTL3	Apply
	hoop stress in thin spherical shell.		
9	A thin spherical vessel of 1.5 m internal diameter and 15 mm shell	BTL5	Evaluate
	thickness is filled with a fluid at 1.75 N/mm ² . Determine the stress		
	induced in the material of vessel.		
10	A thin cylindrical shell 3m long, 1.2 m diameter is subjected to an	BTL5	Evaluate
	internal pressure of 1.67 N/mm2. If the thickness of the shell is 13 mm,		
	$E = 2 \times 105 \text{ N/mm2}$ and $1/m = 0.28$. (a) Find the circumferential and		
	longitudinal stresses. (b) Find the maximum shear stress and change in		
	dimensions of the shaft.		
11	A spherical shell of 2 m diameter is made up of 10 mm thick plates.	BTL5	Evaluate
	Calculate the change in diameter and volume of the shell, when it is		
	subjected to an internal pressure of 1.6 MPa. Take $E = 200$ GPa and		
	1/m = 0.3.		
12	A steel cylinder of 300 mm external diameter is to be shrunk to another	BTL5	Evaluate
	steel cylinder of 150 mm internal diameter. After shrinking the diameter		
	at the junction is 250 mm and radial pressure at the common junction is		
	40 N/mm2. Find the original difference in the radii at the junction. Take		
	$E = 2x105 N/mm^2$.		
13	Find the thickness of metal necessary for a cylindrical shell of internal	BTL5	Evaluate
	diameter 150 mm to withstand an internal pressure of 25 N/mm ² . The		
	maximum hoop stress in the section is not to exceed 125 N/mm ² .		
14	A cylindrical shell 3m long which is closed at the ends has an internal	BTL5	Evaluate
	diameter of 1.5m and a wall thickness of 20mm. Calculate the		
	circumferential and longitudinal stresses induced and change in the		
	dimensions of the steel. Cylindrical shell is subjected to an internal		
	pressure of 1.5 N/mm ² Take $E=2\times10^5$ N/mm ² and poisons ratio=0.3		
15	A thin cylindrical shell with following dimensions is filled with a liquid	BTL5	Evaluate
	at atmospheric pressure. Length=1.2m, external diameter=20cm,		
	thickness of metal=8mm, Find the value of the pressure exerted by the		
	liquid on the walls of the cylinder and the hoop stress induced if an		
	additional volume of 25cm ³ of liquid is pumped into the cylinder. Take		
L		L	1

	$E=2.1\times10^5$ N/mm and poisons ratio = 0.33.		
16	Calculate (i) the change in diameter (ii) Change in length and (iii)	BTL3	Apply
	Change in volume of a thin cylindrical shell 100cm diameter, 1cm thick		
	and 5m long, when subjected to internal pressure of 3 N/mm ² . Take the		
	value of E= 2×10^5 N/mm ² and Poisson's ratio, μ =0.3.		
17	A spherical shell of 2 m diameter is made up of 10 mm thick plates.	BTL5	Evaluate
	Calculate the change in diameter and volume of the shell, when it is		
	subjected to an internal pressure of 1.6 MPa. Take $E = 200$ GPa and		
	1/m = 0.3.		
18	Derive the expressions for change in dimensions of spherical shell due	BTL3	Apply
	to internal pressure.		

