SRM VALLIAMMAI ENGINEERING COLLEGE

(An Autonomous Institution)

SRM Nagar, Kattankulathur – 603203.

DEPARTMENT OF MECHANICAL ENGINEERING

QUESTION BANK

IV SEMESTER

ME3464 THEORY OF MACHINES

Regulation - 2023 Academic Year 2024 – 2025 (Even Semester)

Prepared by

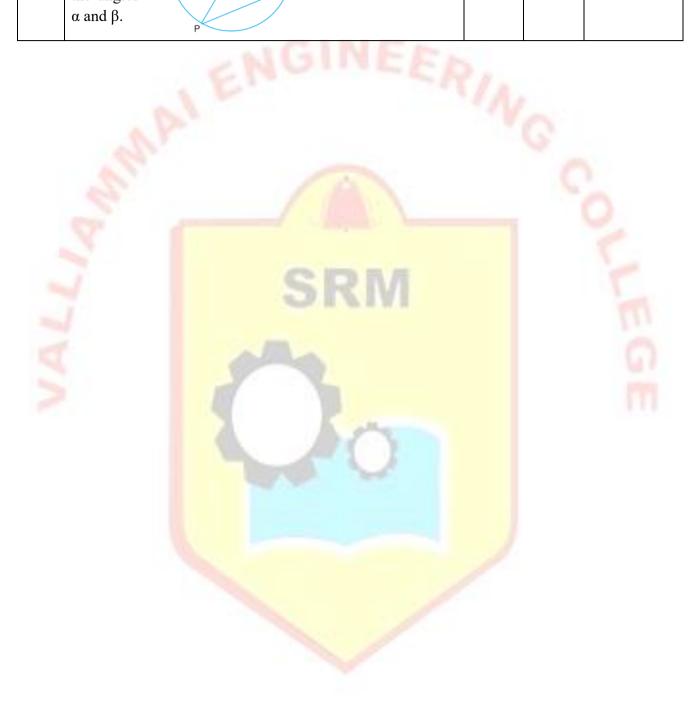
Mr.G.LOKESH, Assistant Professor / Mechanical

SRM VALLIAMMAI ENGINEERING COLLEGE

(An Autonomous Institution) SRM Nagar, Kattankulathur – 603203. QUESTION BANK

SUBJECT / SUBJECT CODE: THEORY OF MACHINESSEM / YEAR: IV SEM / II YEAR

UNIT I BASICS OF MECHANISMS


Classification of mechanisms – Basic kinematic concepts and definitions – Degree of freedom, Mobility – Kutzbach criterion, Gruebler's criterion – Grashof's Law – Kinematic inversions of four – bar chain and slider crank chains.

	Part – A (2 Marks)				
S. No.	Questions	Level	Competence		
1.	Define Kinematic Link.	1	Remember		
2.	Mention the characteristics of kinematic link.	2	Understand		
3.	Define Structure.	1	Remember		
4.	Distinguish between machine and structure.	2	Understand		
5.	Distinguish between machine and mechanism.	2	Understand		
6.	Define kinematic pair.	1	Remember		
7.	Write a note on classification of kinematic pairs.	2	Understand		
8.	What are the three types of constrained motions?	1	Remember		
9.	Define kinematic chain.	1	Remember		
10.	What the different types of joints?	2	Understand		
11.	Define degree of freedom.	1	Remember		
12.	What is the difference between kutzhbach equation and grubler's equation?	2	Understand		
13.	What is meant by inversion of mechanism?	2	Understand		
14.	State Grashoff's law.	1	Remember		
15.	What are the different types of kinematic chain?	1	Remember		
16.	Differentiate completely constrained motion and incompletely constrained motion.	2	Understand		
17.	Define successfully constrained motion.	1	Remember		
18.	What are the types of kinematic pairs based on relative motion	1	Remember		
	between elements?				
19.	What is meant by lower pair?	2	Understand		
20.	What are the types of kinematic pairs based on the type of closure?	1	Remember		
21.	What is the use of Oldham's coupling?	2	Understand		
22.	What is meant by higher pair?	2	Understand		
23.	What is meant by simple mechanism?	2	Understand		
24.	What is meant by compound mechanism?	2	Understand		

25.	What is meant by locked chain?		2	Understand
	Part – B (16 Marks)			
S. No.	Questions	Marks	Level	Competence
1.	Describe different types of constrained motions.	16	4	Analyze
2.	Describe the various types of Kinematic pair.	16	4	Analyze
3.	With the help of sketch, describe inversions of four bar chain.	16	4	Analyze
4.	Explain the inversion of Single Slider Crank Chain with neat sketch.	16	4	Analyze
5.	Explain the inversion of Double Slider crank chain with neat sketch.	16	5	Evaluate
6.	Describe the working of Oldham's coupling with a neat sketch and state its application.	16	5	Evaluate
7.	Explain the working of Whitworth quick return mechanism with a neat sketch.	16	4	Analyze
8.	Explain the working of crank and slotted lever quick return motion mechanism with a neat sketch.	16	4	Analyze
9.	What are the types of joints in a chain?	16	5	Evaluate
10.	A crank and slotted lever mechanism used in a shaper has a centre distance of 300 mm between the centre of oscillation of the slotted lever and the centre of rotation of the crank. The radius of the crank is 120 mm. Find the ratio of the time of cutting to the time of return stroke.	16	4	Analyze
11.	In a crank and slotted lever quick return motion mechanism, the distance between the fixed centres is 240 mm and the length of the driving crank is 120 mm. Find the inclination of the slotted bar with the vertical in the extreme position and the time ratio of cutting stroke to the return stroke. If the length of the slotted bar is 450 mm, find the length of the stroke if the line of stroke passes through the extreme positions of the free end of the lever.	16	4	Analyze
12.	Fig. 1 shows the lay out of a quick return mechanism of the oscillating link type, for a special purpose machine. The driving crank BC is 30 mm long and time ratio of the working stroke to the return stroke is to be 1.7. If the length of the working stroke of R is 120 mm, determine the dimensions of AC and AP.	16	4	Analyze

13.	In a Whitworth quick return motion mechanism, as shown in Fig. 2, the distance between the fixed centers is 50 mm and the length of the driving crank is 75 mm. The length of the slotted lever is 150 mm and the length of the connecting rod is 135 mm. Find the ratio of the time of cutting stroke to the time of return stroke and also the effective	16	4	Analyze
14.	stroke. In a crank and slotted lever quick return mechanism, the distance between the fixed centres is 150 mm and the driving crank is 75 mm long. Determine the ratio of the time taken on the cutting and return strokes.	16	4	Analyze
15.	In a crank and slotted lever quick return motion mechanism, the distance between the fixed centres O and C is 200 mm. The driving crank CP is 75 mm long. The pin Q on the slotted lever, 360 mm from the fulcrum O, is connected by a link QR 100 mm long, to a pin R on the ram. The line of stroke of R is perpendicular to OC and intersects OC produced at a point 150 mm from C. Determine the ratio of times taken on the cutting and return strokes.	16	4	Analyze
16.	In a crank and slotted lever quick return mechanism, as shown in Fig. 3, the driving crank length is 75 mm. The distance between the fixed centres is 200 mm and the length of the slotted lever is 500 mm. Find the ratio of the times taken on the cutting and idle strokes. Determine the effective stroke also. P_1	16	4	Analyze
17.	The Whitworth quick return motion mechanism has the driving crank 150 mm long. The distance between fixed centres is 100 mm. The line of stroke of the ram passes through the centre of rotation of the slotted lever whose free end is connected to the ram by a connecting link. Find the ratio of time of cutting to time of return.	16	4	Analyze
18.	A Whitworth quick return motion mechanism, as shown in Fig. 4, has the following particulars : Length of stroke = 150 mm ; Driving crank length = 40 mm;	16	4	Analyze

[Time of cut	ting stroke / Time of return stroke] = 2. Find the		
lengths of			
CD and	Α		
PD. Also	Pt R2		
determine	$P_2 \qquad A_1 \qquad D \qquad A_2$		
the angles	Line of stroke		
α and β .			

UNIT II KINEMATICS OF CAM MECHANISMS

Classification of cams and followers – Terminology and definitions – Displacement diagrams – Uniform velocity, parabolic, simple harmonic and cycloidal motions – follower motions – Layout of plate cam profiles – Specified contour cams – Circular arc and tangent cams.

1	Part – A (2 Marks)				
S.	Questions		Level	Competence	
No.					
1.	What is cam?		2	Understand	
2.	Define tangent cam.		1	Remember	
3.	Distinguish radial and cylindrical cams.	2	Understand		
4.	What are the different motions of the follower?	· N	1	Remember	
5.	Compare Roller and mushroom follower of a cam.		2	Understand	
6.	Explain offset follower.		1	Remember	
7.	Define trace point in the study of cams.		1	Remember	
8.	Define pressure angle with respect to cams.		1	Remember	
9.	Define Lift (or) Stroke in cam.		1	Remember	
10.	Define undercutting in cam. How it occurs?		2	Understand	
11.	What do you know about Nomogram?		1	Remember	
12.	What are the classifications of cam based on the follower more	vement?	1	Remember	
13.	What are the different types of cams?		1	Remember	
14.	What do you know about gravity cam?		2	Understand	
15.	Define Trace point		1	Remember	
16.	Define pressure angle.		1	Remember	
17.	Define Prime circle.		1	Remember	
18.	Define Angle of Ascent.		1	Remember	
19.	What is meant by Simple Harmonic Motion?		2	Understand	
20.	What are the different shapes of high speed cams?		1	Remember	
21.	Define cam angle.		1	Remember	
22.	What are the classifications of follower based on the movement?	follower	1	Remember	
23.	Define Pitch curve.	1	1	Remember	
24.	What are the classifications of the follower based on the motion of the follower?	path of	1	Remember	
25.	What are the classifications of cam base on the constrain follower?	t of the	1	Remember	
Part – <mark>B (16</mark> Marks)					
S. No.	Questions	Marks	Level	Competence	
1.	Describe the different types of motions made by the follower.	16	4	Analyze	
2.	Explain in detail about the types of followers.	16	5	Evaluate	
3.	Draw the displacement, velocity and acceleration curves, when the follower moves with simple	16	6	Create	

<u> </u>				
	harmonic motion and derive the expression for maximum			
	velocity and maximum acceleration.			
4.	A cam is to give the following motion to a knife-edged	16	4	Analyze
	follower :			
	1. Outstroke during 60° of cam rotation ; 2. Dwell for the			
	next 30° of cam rotation ; 3. Return stroke during next 60°			
	of cam rotation, and 4. Dwell for the remaining 210° of cam			
	rotation.			
	The stroke of the follower is 40 mm and the minimum radius			
	of the cam is 50 mm. The follower moves with uniform	1 .		
	velocity during both the outstroke and return strokes. Draw	11		
	the profile of the cam when the axis of the follower passes		0	
	through the axis of the cam shaft.		0	
5.	A cam, with a minimum radius of 25 mm, rotating clockwise	16	4	Analyze
	at a uniform speed is to be designed to give a roller follower,		1	
	at the end of a valve rod, motion described below :			
	1. To raise the valve through 50 mm during 120° rotation of			
	the cam;			
	2. To keep the valve fully raised through next 30°;			
	3. To lower the valve during next 60°; and			
_	4. To keep the valve closed during rest of the revolution i.e.			
	150°;			
0	The diameter of the roller is 20 mm and the diameter of the			
	cam shaft is 25 mm. Draw the profile of the cam when (a)			
	the line of stroke of the valve rod passes through the axis of			
	the cam shaft, and (b) the line of the stroke is offset 15 mm			
	from the axis of the cam shaft. The displacement of the valve,			
	while being raised and lowered, is to take place with simple			
	harmonic motion. Determine the maximum acceleration of			
	the valve rod when the cam shaft rotates at 100 r.p.m. Draw			
	the displacement, the velocity and the acceleration diagrams			
	for one complete revolution of the cam.			
6.	A cam is to be designed for a knife edge follower with the	16	4	Analyze
	following data :			
	1. Cam lift = 40 mm during 90° of cam rotation with simple			
	harmonic motion.			
	2. Dwell for the next 30°.			
	3. During the next 60° of cam rotation, the follower returns			
	to its original position with simple harmonic motion.			
	4. Dwell during the remaining 180°.			
	Draw the profile of the cam when the line of stroke of the			
	follower passes through the axis of the cam shaft.			
	The radius of the base circle of the cam is 40 mm. Determine			
	the maximum velocity and acceleration of the follower			
	during its ascent and descent, if the cam rotates at 240 r.p.m.			

		1.6		
7.	A cam is to give the following motion to a knife-edged	16	4	Analyze
	follower :			
	1. Outstroke during 60° of cam rotation ; 2. Dwell for the			
	next 30° of cam rotation ; 3. Return stroke during next 60°			
	of cam rotation, and 4. Dwell for the remaining 210° of cam			
	rotation.			
	The stroke of the follower is 40 mm and the minimum radius			
	of the cam is 50 mm. The follower moves with uniform			
	velocity during both the outstroke and return strokes. Draw			
	the profile of the cam when the axis of the follower is offset	1 -		
	by 20 mm from the axis of the cam shaft.	11		
8.	A cam is to be designed for a knife edge follower with the	16	4	Analyze
	following data :		0	
	1. Cam lift = 40 mm during 90° of cam rotation with simple			
	harmonic motion.			
	2. Dwell for the next 30°.			
	3. During the next 60° of cam rotation, the follower returns	1		
	to its original position with simple harmonic motion.			
	4. Dwell during the remaining 180°.			
	Draw the profile of the cam when the line of stroke is offset			
	20 mm from the axis of the cam shaft.			
	The radius of the base circle of the cam is 40 mm. Determine			
100	the maximum velocity and acceleration of the follower			
	during its ascent and descent, if the cam rotates at 240 r.p.m.			
9.	A cam drives a flat reciprocating follower in the following	16	4	Analyze
	manner :			
	During first 120° rotation of the cam, follower moves			
	outwards through a distance of 20 mm with simple harmonic			
	motion. The follower dwells during next 30° of cam rotation.			
	During next 120° of cam rotation, the follower moves			
	inwards with simple harmonic motion. The follower dwells			
	for the next 90° of cam rotation. The minimum radius of the			
	cam is 25 mm. Draw the profile of the cam.	1		
10.	Construct a tangent cam and mention the important	16	6	Create
10.	terminologies on it. Also derive the expression for		Ĭ	210000
	displacement, velocity, acceleration of a reciprocating roller			
	follower when the roller has contact with the nose.			
11.	Draw a cam profile to drive an oscillating roller follower to	16	4	Analyze
11.	the specifications given below :	10		2 mary 20
	(a) Follower to move outwards through an angular			
	displacement of 20° during the first 120°			
	rotation of the cam;			
	(b) Follower to return to its initial position during next 120°			
	rotation of the cam ;			
	(c) Follower to dwell during the next 120° of cam rotation.			
	(c) ronower to twen turing the next 120° of cam folation.			

		1		
	The distance between pivot centre and roller centre = 120			
	mm ; distance between pivot centre and cam axis = 130 mm			
	; minimum radius of cam = 40 mm ; radius of roller = 10 mm			
	; inward and outward strokes take place with simple			
	harmonic motion.			
12.	A cam, with a minimum radius of 50 mm, rotating clockwise	16	4	Analyze
	at a uniform speed, is required to give a knife edge follower			
	the motion as described below :			
	1. To move outwards through 40 mm during 100° rotation of			
	the cam ; 2. To dwell for next 80° ; 3. To return to its starting	1 -		
	position during next 90°, and 4. To dwell for the rest period	110		
	of a revolution i.e. 90°.		2	
	Draw the profile of the cam when the line of stroke of the		6	
	follower passes through the centre of the cam shaft.		-	
	The displacement of the follower is to take place with			
	uniform acceleration and uniform retardation. Determine the			
	maximum velocity and acceleration of the follower when the	-		
	cam shaft rotates at 900 r.p.m. Draw the displacement,			
	velocity and acceleration diagrams for one complete			
	revolution of the cam.			
13.	Draw the profile of the cam when the roller follower moves	16	4	Analyze
15.	with cycloidal motion during out stroke and return stroke, as	10	•	1 mary 20
1	given below :			
	1. Out stroke with maximum displacement of 31.4 mm			
1	during 180° of cam rotation,			
1	 Return stroke for the next 150° of cam rotation, 			
	3. Dwell for the remaining 30° of cam rotation.			
	The minimum radius of the cam is 15 mm and the roller			
	diameter of the follower is 10 mm. The axis of the roller			
	follower is offset by 10 mm towards right from the axis of			
	cam shaft.			
14.	In a symmetrical tangent cam operating a roller follower, the	16	4	Analyze
17.	least radius of the cam is 30 mm and roller radius is 17.5 mm.	10	т	1 mary 20
	The angle of ascent is 75° and the total lift is 17.5 mm. The			
	speed of the cam shaft is 600 r.p.m. Calculate : 1. the			
	principal dimensions of the cam; 2. the accelerations of the			
	follower at the beginning of the lift, where straight flank			
	merges into the circular nose and at the apex of the circular			
	nose. Assume that there is no dwell between ascent and			
1.7	descent.	16		A 1
15.	A cam has straight working faces which are tangential to a	16	4	Analyze
	base circle of diameter 90 mm. The follower is a roller of			
	diameter 40 mm and the centre of roller moves along a			
	straight line passing through the centre line of the cam shaft.			
	The angle between the tangential faces of the cam is 90° and	1		

		1	1	
	the faces are joined by a nose circle of 10 mm radius. The			
	speed of rotation of the cam is 120 revolutions per min.			
	Find the acceleration of the roller centre 1. when during the			
	lift, the roller is just about to leave the straight flank ; and 2.			
	when the roller is at the outer end of its lift.			
16.	A cam consists of a circular disc of diameter 75 mm with its	16	4	Analyze
	centre displaced 25 mm from the camshaft axis. The follower			
	has a flat surface (horizontal) in contact with the cam and the			
	line of action of the follower is vertical and passes through			
	the shaft axis as shown in Fig. 20.50. The mass of the	11 -		
	follower is 2.3 kg and is pressed downwards by a spring	11		
	which has a stiffness of 3.5 N/mm. In the lowest position the		~	
	spring force is 45 N.		5	
	1. Derive an expression for the acceleration of the follower			
	in terms of the angle of rotation from the beginning of the			
	lift.			0
	2. As the cam shaft speed is gradually increased, a value is			-
	reached at which the follower begins to lift from the cam			5
	surface.			1
	Determine the camshaft speed for this condition.			1
17.	A flat ended valve tappet is operated by a symmetrical cam	16	4	Analyze
	with circular arc for flank and nose. The straight line path of			
10	the tappet passes through the cam axis. Total angle of action			· •
	= 150° . Lift = 6 mm. Base circle diameter = 30 mm. Period			-
	of acceleration is half the period of retardation during the lift.			5.13
	The cam rotates at 1250 r.p.m. Find : 1. flank and nose radii			
	; 2. maximum acceleration and retardation during the lift.			
18.	Describe the terminologies of circular arc cam with flat face	16	6	Create
	follower and derive expressions related to it.			

UNIT III GEARS AND GEAR TRAINS Law of toothed gearing – Involutes and cycloidal tooth profiles – definitions–Gear tooth action–contact ratio-Interference and under cutting. Gear trains- Speed ratio, train value - Parallel axis gear trains-Epicyclic Gear Trains - Compound gear trains - reverted gear trains - cyclometer - differential gear. Part – A (2 Marks) S. **Ouestions** Level Competence No. Remember 1. State law of Gearing. 1 Understand 2. Define normal and axial pitch in helical gears. 2 2 3. What is the maximum efficiency in worm and worm gear? Understand What are the advantages and limitations of gear drive? Write any two. Remember 4. 1 5. Define interference. 1 Remember 6. Define cycloidal tooth profile and involute tooth profile. 1 Remember Define circular pitch and diametral pitch in spur gears. Remember 7. 1 8. Define Backslash. Remember 1 9. What is gear train of train of wheels? 2 Understand 10. 2 Understand Write velocity ratio in compound train of wheels? 11. Define simple gear train. 1 Remember 12. 2 Understand What is reverted gear train? Where the epicyclic gear trains are used? Understand 13. 2 Write down the difference between involute and cycloidal tooth Understand 14. 2 profile. Define Contact Ratio. 15. 1 Remember 16. What is an angle of obliquity in gears? 2 Understand 17. What is bevel gearing? Mention its types. 1 Remember 18. What are the methods to avoid interference? Remember 1 19. 2 What is the advantage when arc of recess is equal to arc of approach Understand in meshing gears? What do you know about tumbler gear? 20. Understand 2 21. What you meant by non-standard gear teeth? 2 Understand 22. What is meant by compound gear train? Understand 2 What is the advantage of a compound gear train over a simple gear 2 Understand 23. train? 24. State the methods to find the velocity ratio of epicyclic gear train. Remember 1 What is the externally applied torques used to keep the gear train in Remember 25. 1 equilibrium? Part - B (16 Marks) S. Questions Marks Level Competence No. 1. With a neat sketch, describe the terminologies used in gears. 16 5 Evaluate 2. The number of teeth on each of the two equal spur gears in 16 4 Analyze mesh are 40. The teeth have 20° involute profile and the

	module is 6 mm. If the arc of contact is 1.75 times the			
	circular pitch, find the addendum.			
3.	A pinion having 30 teeth drives a gear having 80 teeth. The	16	4	Analyze
	profile of the gears is involute with 20° pressure angle, 12			
	mm module and 10 mm addendum. Find the length of path			
	of contact, arc of contact and the contact ratio.			
4.	Two involute gears of 20° pressure angle are in mesh. The	16	4	Analyze
	number of teeth on pinion is 20 and the gear ratio is 2. If the			
	pitch expressed in module is 5 mm and the pitch line speed			
	is 1.2 m/s, assuming addendum as standard and equal to one	10		
	module, find :	11		
	1. The angle turned through by pinion when one pair of teeth		0	
	is in mesh; and			
	2. The maximum velocity of sliding.			
5.	A pair of gears, having 40 and 20 teeth respectively, are	16	5	Evaluate
	rotating in mesh, the speed of the smaller being 2000 r.p.m.			
	Determine the velocity of sliding between the gear teeth			
	faces at the point of engagement, at the pitch point, and at			
	the point of disengagement if the smaller gear is the driver.			
	Assume that the gear teeth are 20° involute form, addendum			
-	length is 5 mm and the module is 5 mm. Also find the angle			
	through which the pinion turns while any pairs of teeth are			
	in contact.			5
6.	The following data relate to a pair of 20° involute gears in	16	4	Analyze
1	mesh : Module = 6 mm, Number of teeth on pinion = 17,			
	Number of teeth on gear = 49; Addenda on pinion and gear			
	wheel = 1 module. Find : 1. The number of pairs of teeth in			
	contact ; 2. The angle turned through by the pinion and the			
	gear wheel when one pair of teeth is in contact, and 3. The			
	ratio of sliding to rolling motion when the tip of a tooth on			
	the larger whee <mark>l (i) is just making contact, (ii) is just leaving</mark>			
	contact with its mating tooth, and (iii) is at the pitch point.			
7.	A pair of spur gears with involute teeth is to give a gear ratio	16	4	Analyze
	of 4 : 1. The arc of approach is not to be less than the circular			
	pitch and smaller wheel is the driver. The angle of pressure			
	is 14.5°. Find : 1. the least number of teeth that can be used			
	on each wheel, and 2. the addendum of the wheel in terms of			
	the circular pitch ?			
8.	Determine the minimum number of teeth required on a	16	4	Analyze
	pinion, in order to avoid interference which is to gear with,			
			1	
	1. a wheel to give a gear ratio of 3 to 1; and 2. an equal			
	1. a wheel to give a gear ratio of 3 to 1; and 2. an equal wheel. The pressure angle is 20° and a standard addendum of 1 module for the wheel may be assumed.			

9.	A pinion of 20 involute teeth and 125 mm pitch circle	16	5	Evaluate
۶.	diameter drives a rack. The addendum of both pinion and	10	5	L'vuluute
	rack is 6.25 mm. What is the least pressure angle which can			
	be used to avoid interference ? With this pressure angle, find			
	the length of the arc of contact and the minimum number of			
1.0	teeth in contact at a time.	1.6		. 1
10.	In an epicyclic gear train, an arm carries two gears A and B	16	4	Analyze
	having 36 and 45 teeth respectively. If the arm rotates at 150			
	r.p.m. in the anticlockwise direction about the centre of the			
	gear A which is fixed, determine the speed of gear B. If the	1 .		
	gear A instead of being fixed, makes 300 r.p.m. in the	11		
	clockwise direction, what will be the speed of gear B?		0	
11.	In a reverted epicyclic gear train, the arm A carries two gears	16	4	Analyze
	B and C and a compound gear D - E. The gear B meshes with			
	gear E and the gear C meshes with gear D. The number of		1	
	teeth on gears B, C and D are 75, 30 and 90 respectively.			
	Find the speed and direction of gear C when gear B is fixed			
	and the arm A makes 100 r.p.m. clockwise.			5
12.	An epicyclic gear consists of three gears A, B and C as	16	5	Evaluate
	shown in Fig. 5. The gear			
_	A has 72 internal teeth and			
	gear C has 32 external			
10	teeth. The gear B meshes			· • • •
	with both A and C and is			
	carried on an arm EF			1.11
	which rotates about the C			
	centre of A at 18 r.p.m If			
	the gear A is fixed,			
	determine the speed of			
	gears B and C.			
13.	An epicyclic train of gears is arranged as shown in Fig. 6.	16	4	Analyze
	How many revolutions does the arm, to which the pinions B			
	and C are attached, make : Arm	1		
	1. when A makes one revolution			
	clockwise and D makes half a			
	revolution anticlockwise, and			
	2. when A makes one revolution			
	clockwise and D is stationary ?			
	The number of teeth on the			
	gears A and D are 40 and 90			
	respectively.			
14.	In an epicyclic gear train, the internal wheels A and B and	16	4	Analyze
	compound wheels C and D rotate independently about axis			-
	O. The wheels E and F rotate on pins fixed to the arm G. E			

	 gears with A and C and F gears with B and D. All the wheels have the same module and the number of teeth are : TC = 28; TD = 26; TE = TF = 18. 1. Sketch the arrangement ; 2. Find the number of teeth on A and B ; 3. If the arm G makes 100 r.p.m. clockwise and A is fixed, find the speed of B ; and 4. If the arm G makes 100 r.p.m. counter clockwise ; find the speed of wheel B. 			
15.	In an epicyclic gear of the 'sun and planet' type shown in Fig. 7, the pitch circle diameter of the internally toothed ring is to be 224 mm and the module 4 mm. When the ring D is stationary, the spider A, which carries three planet wheels C of equal size, is to make one revolution in the same sense as the sunwheel B for every five revolutions of the driving spindle carrying the sunwheel B. Determine suitable numbers of teeth for all the wheels.	16	4	Analyze
16.	Two shafts A and B are co-axial. A gear C (50 teeth) is rigidly mounted on shaft A. A compound gear D-E gears with C and an internal gear G. D has 20 teeth and gears with C and E has 35 teeth and gears with an internal gear G. The gear G is fixed and is concentric with the shaft axis. The compound gear D-E is mounted on a pin which projects from an arm keyed to the shaft B. Sketch the arrangement and find the number of teeth on internal gear G assuming that all gears have the same module. If the shaft A rotates at 110 r.p.m., find the speed of shaft B.	16	4	Analyze
17.	Fig. 8 shows diagrammatically a compound epicyclic gear train. Wheels A, D and E are free to rotate independently on spindle O, while B and C are compound and rotate together on spindle P, on the end of arm OP. All the teeth on different wheels have the same module. A has 12 teeth, B has 30 teeth and C has 14 teeth cut externally. Find the number of teeth on wheels D and E which are cut internally. If the wheel A is driven clockwise at 1 r.p.s. while D is driven counter clockwise at 5 r.p.s., determine the magnitude and direction of the angular velocities of arm OP and wheel E.	16	4	Analyze

18.	An internal wheel B with 80 teeth is keyed to a shaft F. A	16	4	Analyze
	fixed internal wheel C with 82 teeth is concentric with B. A			
	compound wheel D-E gears with the two internal wheels; D			
	has 28 teeth and gears with C while E gears with B. The			
	compound wheels revolve freely on a pin which projects			
	from a disc keyed to a shaft A co-axial with F. If the wheels			
	have the same pitch and the shaft A makes 800 r.p.m., what			
	is the speed of the shaft F? Sketch the arrangement.			

SRM

	UNIT IV FORCE ANALYSIS			
Dynar	nic force analysis – Inertia force and Inertia torque– D Alember	t's princi	ple – Dyr	namic Analysis
in reci	procating engines - Gas forces - Inertia effect of connecting re-	od– Bear	ring loads	s – Crank shaft
torque	e – Turning moment diagrams – Fly Wheels.			
	Part – A (2 Marks)			
S.	Questions	Level	Competence	
No.				
1.	Define inertia and inertia force.		1	Remember
2.	Define dynamic force analysis.		1	Remember
3.	List the sufficient conditions of static equilibrium of a body.	1.	2	Understand
4.	Mention some examples of applied forces.	1	1	Remember
5.	Differentiate between active force and reactive force.		2	Understand
6.	Define constraint forces.		1	Remember
7.	Point out the methods used for static force analysis of mechan	isms.	2	Understand
8.	State the principle of superposition.		1	Remember
9.	What are the conditions for dynamic equilibrium?		2	Understand
10.	State D'Alembert's principle.		1	Remember
11.	Write the expression for acceleration of the piston at the inn	er dead	1	Remember
	centre position.			
12.	Write the expression for piston effort for a vertical eng	gine by	1	Remember
	considering the weight of the engine and frictional resistance.			111
13.	List the uses of turning moment diagram.			Understand
14.	Define crank pin effort.		1	Remember
15.	Define coefficient of fluctuation of speed.		1	Remember
16.	Define obliquity ratio.		1	Remember
17.	Sketch the turning moment diagram for a single cylinder double	e acting	1	Remember
	steam engine.			
18.	Sketch the turning moment diagram for a single cylinder four	r stroke	1	Remember
	IC engine.			
19.	List the significance of turning moment diagram.		2	Understand
20.	Multi cylinder engines have less fluctuation in turning r	noment	2	Understand
	diagram. Justify	1		
21.	Mention the significance of flywheels used in engines.		2	Understand
22.	Write the expression for maximum fluctuation of energy stor	red in a	1	Remember
	flywheel.			
23.	Define coefficient of steadiness.		1	Remember
24.	Differentiate the functions of flywheel and governor.		2	Understand
25.	What is the purpose of flywheel used in an engine?		2	Understand
	Part – B (16 Marks)		1	
S.	Questions	Marks	Level	Competence
No.				
1.	Derive the expression for the velocity and acceleration of the	16	6	Create
	piston and connecting rod in a reciprocating engine.			

2.	Derive the expression for the forces acting in the	16	6	Create
	reciprocating parts of an engine neglecting the weight of the	10	Ũ	
	connecting rod.			
3.	The crank and connecting rod of a steam engine are 0.3 m	16	4	Analyze
51	and 1.5 m in length. The crank rotates at 180 r.p.m.	10		1 11111 / 20
	clockwise. Determine the velocity and acceleration of the			
	piston when the crank is at 40 degrees from the inner dead			
	centre position. Also determine the position of the crank for			
	zero acceleration of the piston.			
4.	In a slider crank mechanism, the length of the crank and	16	4	Analyze
т.	connecting rod are 150 mm and 600 mm respectively. The	10	-	7 mary 20
	crank position is 60° from inner dead centre. The crank shaft	11	~	
	speed is 450 r.p.m. (clockwise). Using analytical method,		5	
	determine: 1. Velocity and acceleration of the slider, and 2.		_	
	Angular velocity and angular acceleration of the connecting			
	rod.			0
5.	The crank-pin circle radius of a horizontal engine is 300 mm.	16	4	Analyze
5.	The mass of the reciprocating parts is 250 kg. When the	10		Anaryze
	crank has travelled 60° from I.D.C., the difference between			1
	the driving and the back pressures is 0.35 N/mm ² . The			1
	connecting rod length between centres is 1.2 m and the			111
	cylinder bore is 0.5 m. If the engine runs at 250 r.p.m. and if			111
	the effect of piston rod diameter is neglected, calculate : 1.			0
	pressure on slide bars, 2. thrust in the connecting rod, 3.			
	tangential force on the crank-pin, and 4. turning moment on			1777
	the crank shaft.			
6.	A vertical double acting steam engine has a cylinder 300 mm	16	4	Analyze
0.	diameter and 450 mm stroke and runs at 200 r.p.m. The	10		7 mary 20
	reciprocating parts has a mass of 225 kg and the piston rod			
	is 50 mm diameter. The connecting rod is 1.2 m long. When			
	the crank has turned through 125° from the top dead centre,			
	the steam pressure above the piston is 30 kN/m^2 and below			
	the piston is 1.5 kN/m^2 . Calculate the effective turning	1		
	moment on the crank shaft.			
7.	The crank and connecting rod of a petrol engine, running at	16	4	Analyze
, .	1800 r.p.m.are 50 mm and 200 mm respectively. The			
	diameter of the piston is 80 mm and the mass of the			
	reciprocating parts is 1 kg. At a point during the power			
	stroke, the pressure on the piston is 0.7 N/mm ² , when it has			
	moved 10 mm from the inner dead centre. Determine : 1. Net			
	load on the gudgeon pin, 2. Thrust in the connecting rod, 3.			
	Reaction between the piston and cylinder, and 4. The engine			
	speed at which the above values become zero.			
8.	A vertical petrol engine 100 mm diameter and 120 mm stroke	16	4	Analyze
0.	has a connecting rod 250 mm long. The mass of the piston is	10		- <u></u>

 1.1 kg. The speed is 2000 r.p.m. On the expansion stroke with a crank 20° from top dead centre, the gas pressure is 700 kN/m^2. Determine: 1. Net force on the piston, 2. Resultant load on the gudgeon pin, 3. Thrust on the cylinder walls, and 4. Speed above which, other things remaining same, the gudgeon pin load would be reversed in direction. A horizontal steam engine running at 120 r.p.m. has a bore of 250 mm and a stroke of 400 mm. The connecting rod is 0.6 m and mass of the reciprocating parts is 60 kg. When the 	16	4	Analyze
crank has turned through an angle of 45° from the inner dead centre, the steam pressure on the cover end side is 550 kN/m ² and that on the crank end side is 70 kN/m ² . Considering the diameter of the piston rod equal to 50 mm, determine: 1. turning moment on the crank shaft, 2. thrust on the bearings, and 3. acceleration of the flywheel, if the power of the engine is 20 kW, mass of the flywheel 60 kg and radius of gyration 0.6 m.	11	GO	
Derive the expression for the energy stored in a flywheel.	16	6	Create
A horizontal cross compound steam engine develops 300 k W at 90 r.p.m. The coefficient of fluctuation of energy as found from the turning moment diagram is to be 0.1 and the fluctuation of speed is to be kept within \pm 0.5% of the mean speed. Find the weight of the flywheel required, if the radius of gyration is 2 metres.	16	5	Evaluate
The turning moment diagram for a petrol engine is drawn to the following scales : Turning moment, $1 \text{ mm} = 5 \text{ N-m}$; crank angle, $1 \text{ mm} = 1^\circ$. The turning moment diagram repeats itself at every half revolution of the engine and the areas above and below the mean turning moment line taken in order are 295, 685, 40, 340, 960, 270 mm2. The rotating parts are equivalent to a mass of 36 kg at a radius of gyration of 150 mm. Determine the coefficient of fluctuation of speed when the engine runs at 1800 r.p.m.	16	4	Analyze
The turning moment diagram for a multicylinder engine has been drawn to a scale 1 mm = 600 N-m vertically and 1 mm = 3° horizontally. The intercepted areas between the output torque curve and the mean resistance line, taken in order from one end, are as follows : + 52, -124 , + 92, -140 , + 85, -72 and + 107 mm2, when the engine is running at a speed of 600 r.p.m. If the total fluctuation of speed is not to exceed $\pm 1.5\%$ of the mean, find the necessary mass of the flywheel of radius 0.5 m.	16	4	Analyze
The flywheel of a steam engine has a radius of gyration of 1 m and mass 2500 kg. The starting torque of the steam engine is 1500 N-m and may be assumed constant.	16	4	Analyze
	with a crank 20° from top dead centre, the gas pressure is 700 kN/m^2. Determine: 1. Net force on the piston, 2. Resultant load on the gudgeon pin, 3. Thrust on the cylinder walls, and 4. Speed above which, other things remaining same, the gudgeon pin load would be reversed in direction. A horizontal steam engine running at 120 r.p.m. has a bore of 250 mm and a stroke of 400 mm. The connecting rod is 0.6 m and mass of the reciprocating parts is 60 kg. When the crank has turned through an angle of 45° from the inner dead centre, the steam pressure on the cover end side is 550 kN/m^2 and that on the crank end side is 70 kN/m^2. Considering the diameter of the piston rod equal to 50 mm, determine: 1. turning moment on the crank shaft, 2. thrust on the bearings, and 3. acceleration of the flywheel, if the power of the engine is 20 kW, mass of the flywheel 60 kg and radius of gyration 0.6 m. Derive the expression for the energy stored in a flywheel. A horizontal cross compound steam engine develops 300 k W at 90 r.p.m. The coefficient of fluctuation of energy as found from the turning moment diagram is to be 0.1 and the fluctuation of speed is to be kept within \pm 0.5% of the mean speed. Find the weight of the flywheel required, if the radius of gyration is 2 metres. The turning moment diagram for a petrol engine is drawn to the following scales : Turning moment, 1 mm = 5 N-m ; crank angle, 1 mm = 1°. The turning moment diagram repeats itself at every half revolution of the engine and the areas above and below the mean turning moment line taken in order are 295, 685, 40, 340, 960, 270 mm2. The rotating parts are equivalent to a mass of 36 kg at a radius of gyration of 150 mm. Determine the coefficient of fluctuation of speed when the engine runs at 1800 r.p.m. The turning moment diagram for a multicylinder engine has been drawn to a scale 1 mm = 600 N-m vertically and 1 mm = 3° horizontally. The intercepted areas between the output torque curve and the mean resistance line, taken in order from one end, are as foll	with a crank 20° from top dead centre, the gas pressure is 700 kN/m^2. Determine: 1. Net force on the piston, 2. Resultant load on the gudgeon pin, 3. Thrust on the cylinder walls, and 4. Speed above which, other things remaining same, the gudgeon pin load would be reversed in direction.16A horizontal steam engine running at 120 r.p.m. has a bore of 250 mm and a stroke of 400 mm. The connecting rod is 0.6 m and mass of the reciprocating parts is 60 kg. When the crank has turned through an angle of 45° from the inner dead centre, the steam pressure on the cover end side is 500 kN/m^2 and that on the crank end side is 70 kN/m^2. Considering the diameter of the piston rod equal to 50 mm, determine: 1. turning moment on the crank shaft, 2. thrust on the bearings, and 3. acceleration of the flywheel, if the power of the engine is 20 kW, mass of the flywheel 60 kg and radius of gyration 0.6 m.16Derive the expression for the energy stored in a flywheel.16A horizontal cross compound steam engine develops 300 k W at 90 r.p.m. The coefficient of fluctuation of energy as found from the turning moment diagram is to be 0.1 and the fluctuation of speed is to be kept within ± 0.5% of the mean speed. Find the weight of the flywheel required, if the radius of gyration is 2 metres.16The turning moment diagram for a petrol engine is drawn to the following scales : Turning moment line taken in order are 295, 685, 40, 340, 960, 270 mm2. The rotating parts are equivalent to a mass of 36 kg at a radius of gyration of 150 mm. Determine the coefficient of fluctuation of speed when the engine runs at 1800 r.p.m.16The turning moment diagram for a multicylinder engine has been drawn to a scale 1 mm = 600 N-m vertically and 1 mm = 3° horizontally. The intercepted areas between the output <b< td=""><td>with a crank 20° from top dead centre, the gas pressure is 700 kN/m'2. Determine: 1. Net force on the piston, 2. Resultant load on the gudgeon pin, 3. Thrust on the cylinder walls, and 4. Speed above which, other things remaining same, the gudgeon pin load would be reversed in direction.16A horizontal steam engine running at 120 r.p.m. has a bore of 250 mm and a stroke of 400 mm. The connecting rod is 0.6 m and mass of the reciprocating parts is 60 kg. When the crank has turned through an angle of 45° from the inner dead centre, the steam pressure on the cover end side is 550 kN/m'2 and that on the crank shaft, 2. thrust on the bearings, and 3. acceleration of the flywheel for kg and radius of the engine is 20 kW, mass of the flywheel 60 kg and radius of gyration 0.6 m.16Derive the expression for the energy stored in a flywheel.166A horizontal cross compound steam engine develops 300 k uf of until from the turning moment diagram is to be 0.1 and the fuctuation of speed is to be kapt within \pm 0.5% of the mean speed. Find the weight of the flywheel required, if the radius of gyration is 2 metres.164The turning moment diagram for a petrol engine is drawn to the following scales : Turning moment diagram repeats itself at every half revolution of the engine and the areas above and below the mean turning moment line taken in order are 295, 685, 40, 340, 960, 270 mm2. The rotating parts are equivalent to a mass of 36 kg at a radius of gyration of 150 mm. Determine the coefficient of fluctuation of speed when the engine runs at 1800 r.p.m.164The turning moment diagram for a multicylinder engine has been drawn to a scale 1 mm - 600 N-m vertically and 1 mm = 3° horizontally. The intercepted areas between the output torque curve and the mean r</td></b<>	with a crank 20° from top dead centre, the gas pressure is 700 kN/m'2. Determine: 1. Net force on the piston, 2. Resultant load on the gudgeon pin, 3. Thrust on the cylinder walls, and 4. Speed above which, other things remaining same, the gudgeon pin load would be reversed in direction.16A horizontal steam engine running at 120 r.p.m. has a bore of 250 mm and a stroke of 400 mm. The connecting rod is 0.6 m and mass of the reciprocating parts is 60 kg. When the crank has turned through an angle of 45° from the inner dead centre, the steam pressure on the cover end side is 550 kN/m'2 and that on the crank shaft, 2. thrust on the bearings, and 3. acceleration of the flywheel for kg and radius of the engine is 20 kW, mass of the flywheel 60 kg and radius of gyration 0.6 m.16Derive the expression for the energy stored in a flywheel.166A horizontal cross compound steam engine develops 300 k uf of until from the turning moment diagram is to be 0.1 and the fuctuation of speed is to be kapt within \pm 0.5% of the mean speed. Find the weight of the flywheel required, if the radius of gyration is 2 metres.164The turning moment diagram for a petrol engine is drawn to the following scales : Turning moment diagram repeats itself at every half revolution of the engine and the areas above and below the mean turning moment line taken in order are 295, 685, 40, 340, 960, 270 mm2. The rotating parts are equivalent to a mass of 36 kg at a radius of gyration of 150 mm. Determine the coefficient of fluctuation of speed when the engine runs at 1800 r.p.m.164The turning moment diagram for a multicylinder engine has been drawn to a scale 1 mm - 600 N-m vertically and 1 mm = 3° horizontally. The intercepted areas between the output torque curve and the mean r

	Determine: 1. the angular acceleration of the flywheel, and			
	2. the kinetic energy of the flywheel after 10 seconds from			
	the start.			
15.	The turning moment diagram for a four stroke gas engine	16	4	Analyze
	may be assumed for simplicity to be represented by four			
	triangles, the areas of which from the line of zero pressure			
	are as follows : Suction stroke = $0.45 \times 10-3 \text{ m2}$;			
	Compression stroke = $1.7 \times 10-3$ m2; Expansion stroke =			
	$6.8 \times 10-3$ m2; Exhaust stroke = $0.65 \times 10-3$ m2. Each m2			
	of area represents 3 MN-m of energy. Assuming the resisting	1 .		
	torque to be uniform, find the mass of the rim of a flywheel	11		
	required to keep the speed between 202 and 198 r.p.m. The		0	
	mean radius of the rim is 1.2 m.		0	
16.	The turning moment diagram for a multi-cylinder engine has	16	5	Evaluate
	been drawn to a scale of 1 mm to 500 N-m torque and 1 mm		1	
	to 6° of crank displacement. The intercepted areas			
	between output torque curve and mean resistance line taken			
	in order from one end, in sq. mm are $-30, +410, -280, +$			5
	320, -330, +250, -360, +280, -260 sq. mm, when the			-
	engine is running at 800 r.p.m. The engine has a stroke of			
	300 mm and the fluctuation of speed is not to exceed $\pm 2\%$			
	of the mean speed. Determine a suitable diameter and cross-			
0	section of the flywheel rim for a limiting value of the safe			· 🕢
	centrifugal stress of 7 MPa. The material density may be			
	assumed as 7200 kg/m ³ . The width of the rim is to be 5			111
	times the thickness			1.1.1
17.	A multi-cylinder engine is to run at a speed of 600 r.p.m. On	16	4	Analyze
	drawing the turning moment diagram to a scale of 1 mm =			
	250 N-m and 1 $mm = 3^\circ$, the areas above and below the mean			
	torque line in mm2 are : + 160, - 172, + 168, - 191, + 197,			
	-162 . The speed is to be kept within $\pm 1\%$ of the mean speed			
	of the engine. Calculate the necessary moment of inertia of			
	the flywheel. Determine the suitable dimensions of a	1		
	rectangular flywheel rim if the breadth is twice its thickness.			
	The density of the cast iron is 7250 kg/m ³ and its hoop			
	stress is 6 MPa. Assume that the rim contributes 92% of the			
	flywheel effect.			
18.	A punching press is driven by a constant torque electric	16	5	Evaluate
	motor. The press is provided with a flywheel that rotates at			
	maximum speed of 225 r.p.m. The radius of gyration of the			
	flywheel is 0.5 m. The press punches 720 holes per hour;			
	each punching operation takes 2 second and requires 15 kN-			
	m of energy. Find the power of the motor and the minimum			
	mass of the flywheel if speed of the same is not to fall below			
	200 r. p. m			

	UNIT V BALANCING			
Balanc	ing of rotating masses - Balancing of several masses rotating	g in sam	e plane -	- Balancing of
several	masses rotating in different planes. Balancing of reciprocati	ng mass	es – Swa	ying couple –
Hamm	er blow – Partial balancing of unbalanced primary force in a re	ciprocati	ing engin	e.
	Part – A (2 Marks)			
S.	Questions	Level	Competence	
No.				
1.	Why balancing is necessary?		2	Understand
2.	Define static balancing of shaft.		1	Remember
3.	State the reason for choosing multi cylinder engine in compariso	on with	2	Understand
	that of the single cylinderengine	· //		
4.	What do you mean by partial balancing of single cylinder engi	ne?	2	Understand
5.	In case of balancing of rotary masses in different planes, in how	v many	2	Understand
	number of planes the balancing masses will be kept?			
6.	Differentiate between the unbalanced force due to a recipro	ocating	1	Remember
	mass and that due to revolving masses.			
7.	Why complete balancing is not possible in reciprocating engin	le?	2	Understand
8.	Differentiate static and dynamic balancing.		1	Remember
9.	Why single cylinder engines are not fully balanced?		2	Understand
10.	Why are the cranks of a locomotive, with two cylinders, place	d at 90	2	Understand
-	degrees to each other?			111
11.	11. List down the planes of considering for uncoupled and coupled		1	Remember
-	locomotives?			
12.	12. What are primary and secondary unbalanced forces?			Remember
13.	What is meant by primary balancing?		2	Understand
14.	Define tractive force.		1	Remember
15.	What is Hammer Blow?		2	Understand
16.	What is swaying couple?		2	Understand
17.	Why rotating masses are to be dynamically balanced?		2	Understand
18.	State the condition for static balancing.		1	Remember
19.	State the condition for dynamic balancing.		1	Remember
20.	Why is only a part of the unbalanced force due to reciprocating	masses	2	Understand
	balanced by revolving mass ?			
21.	What are the different types of balancing machines?		1	Remember
22.	State the condition for complete balance of several masses rev	volving	1	Remember
	in different planes of a shaft.			
23.	List the effects of partial balancing of locomotives.		1	Remember
24.			2	Understand
25.			2	Understand
	Part – B (16 Marks)			
S.	Questions	Marks	Level	Competence
No.				

1		10	5	F t
1.	Explain about balancing of a single rotating mass by a single	16	5	Evaluate
	mass rotating in the same plane.			
2.	Write about balancing of a single rotating mass by two	16	4	Analyze
	masses rotating in different planes.			
3.	Four masses m1, m2, m3 and m4 are 200 kg, 300 kg, 240 kg	16	4	Analyze
	and 260 kg respectively. The corresponding radii of rotation			
	are 0.2 m, 0.15 m, 0.25 m and 0.3 m respectively and the			
	angles between successive masses are 45°, 75° and 135°.			
	Find the position and magnitude of the balance mass			
	required, if its radius of rotation is 0.2 m.	11		
4.	A shaft carries four masses A, B, C and D of magnitude 200	16	4	Analyze
	kg, 300 kg, 400 kg and 200 kg respectively and revolving at		0	
	radii 80 mm, 70 mm, 60 mm and 80 mm in planes measured		0	
	from A at 300 mm, 400 mm and 700 mm. The angles		-	
	between the cranks measured anticlockwise are A to B 45°,			
	B to C 70° and C to D 120°. The balancing masses are to be			
	placed in planes X and Y. The distance between the planes A			-
	and X is 100 mm, between X and Y is 400 mm and between			5
	Y and D is 200 mm. If the balancing masses revolve at a			-
	radius of 100 mm, find their magnitudes and angular			
	positions.			117
5.	Four masses A, B, C and D as shown below are to be	16	4	Analyze
	completely balanced. Their corresponding masses are x kg,			5
	30 kg, 50 kg, 40 kg respectively. The corresponding radius			100
	(mm) values are 180, 240, 120, 150 respectively. The planes			
	containing masses B and C are 300 mm apart. The angle			
	between planes containing B and C is 90°. B and C make			
	angles of 210° and 120° respectively with D in the same			
	sense. Find :			
	1. The magnitude and the angular position of mass A; and			
	2. The position of planes A and D.			
6.	A, B, C and D are four masses carried by a rotating shaft at	16	4	Analyze
0.	radii 100, 125, 200 and 150 mm respectively. The planes in	10		2 mary 20
	which the masses revolve are spaced 600 mm apart and the			
	mass of B, C and D are 10 kg, 5 kg, and 4 kg respectively.			
	Find the required mass A and the relative angular settings of			
7	the four masses so that the shaft shall be in complete balance.	16	4	Analyza
7.	A shaft carries four masses in parallel planes A, B, C and D in this order along its length. The masses at P and C are 18	16	4	Analyze
	in this order along its length. The masses at B and C are 18			
	kg and 12.5 kg respectively, and each has an eccentricity of			
	60 mm. The masses at A and D have an eccentricity of 80			
	mm. The angle between the masses at B and C is 100° and			
	that between the masses at B and A is 190°, both being			
	measured in the same direction. The axial distance between			
	the planes A and B is 100 mm and that between B and C is			

	200 mm. If the shaft is in complete dynamic balance,			
	determine :			
	1. The magnitude of the masses at A and D ; 2. the distance			
	between planes A and D; and 3. the angular position of the			
	mass at D.			
8.	A shaft has three eccentrics, each 75 mm diameter and 25	16	4	Analyze
	mm thick, machined in one piece with the shaft. The central			
	planes of the eccentric are 60 mm apart. The distance of the			
	centres from the axis of rotation are 12 mm, 18 mm and 12			
	mm and their angular positions are 120° apart. The density	11		
	of metal is 7000 kg/m3. Find the amount of out-of-balance	10		
	force and couple at 600 r.p.m. If the shaft is balanced by		0	
	adding two masses at a radius 75 mm and at distances of 100	00.625	6	
	mm from the central plane of the middle eccentric, find the			
	amount of the masses and their angular positions.			
9.	A shaft is supported in bearings 1.8 m apart and projects 0.45	16	4	Analyze
- •	m beyond bearings at each end. The shaft carries three	- 0		j
	pulleys one at each end and one at the middle of its length.			
	The mass of end pulleys is 48 kg and 20 kg and their centre			
	of gravity are 15 mm and 12.5 mm respectively from the			
	shaft axis. The centre pulley has a mass of 56 kg and its			
	centre of gravity is 15 mm from the shaft axis. If the pulleys			
	are arranged so as to give static balance, determine :			
	1. relative angular positions of the pulleys, and 2. dynamic			
	forces produced on the bearings when the shaft rotates at 300			
10	r.p.m. A single cylinder reciprocating engine has speed 240 r.p.m.,	16	4	Analyza
10.		16	4	Analyze
	stroke 300 mm, mass of reciprocating parts 50 kg, mass of			
	revolving parts at 150 mm radius 37 kg. If two third of the			
	reciprocating parts and all the revolving parts are to be			
	balanced, find : 1. The balance mass required at a radius of			
	400 mm, and 2. The residual unbalanced force when the	1		
	crank has rotated 60° from top dead centre.			
11.	An inside cylinder locomotive has its cylinder centre lines	16	4	Analyze
	0.7 m apart and has a stroke of 0.6 m. The rotating masses			
	per cylinder are equivalent to 150 kg at the crank pin, and the			
	reciprocating masses per cylinder to 180 kg. The wheel			
	centre lines are 1.5 m apart. The cranks are at right angles.			
	The whole of the rotating and $2/3$ of the reciprocating masses			
	are to be balanced by masses placed at a radius of 0.6 m. Find			
	the magnitude and direction of the balancing masses. Find			
	the fluctuation in rail pressure under one wheel, variation of			
	tractive effort and the magnitude of swaying couple at a			
	crank speed of 300 r.p.m.			

12.	The three cranks of a three cylinder locomotive are all on the	16	4	Analyze
	same axle and are set at 120° . The pitch of the cylinders is 1			
	metre and the stroke of each piston is 0.6 m. The			
	reciprocating masses are 300 kg for inside cylinder and 260			
	kg for each outside cylinder and the planes of rotation of the			
	balance masses are 0.8 m from the inside crank.			
	If 40% of the reciprocating parts are to be balanced, find : 1.			
	the magnitude and the position of the balancing masses			
	required at a radius of 0.6 m; and 2. the hammer blow per			
	wheel when the axle makes 6 r.p.s.	11 -		
13.	The following data refer to two cylinder locomotive with	16	4	Analyze
	cranks at 90°: Reciprocating mass per cylinder = 300 kg;		2	-
	Crank radius = 0.3 m ; Driving wheel diameter = 1.8 m ;		6	
	Distance between cylinder centre lines = 0.65 m; Distance		-	
	between the driving wheel central planes = 1.55 m.			
	Determine : 1. the fraction of the reciprocating masses to be			
	balanced, if the hammer blow is not to exceed 46 kN at 96.5			
	km. p.h.; 2. the variation in tractive effort; and 3. the			
	maximum swaying couple.			
14.	The following data apply to an outside cylinder uncoupled	16	4	Analyze
14.	locomotive :	10	4	Anaryze
100				
1	Mass of rotating parts per cylinder = 360 kg ; Mass of			
1	reciprocating parts per cylinder = 300 kg ; Angle between graphs = 00° ; Capale and in a = 0.2 m ; Cylinder centres = 1.75			
Sec.	cranks = 90° ; Crank radius = 0.3 m ; Cylinder centres = 1.75			
1	m; Radius of balance masses = 0.75 m; Wheel centres =			
	1.45 m. If whole of the rotating and two-thirds of			
	reciprocating parts are to be balanced in planes of the driving			
	wheels, find :			
	1. Magnitude and angular positions of balance masses,			
	2. Speed in kilometres per hour at which the wheel will lift			
	off the rails when the load on each driving wheel is 30 kN			
	and the diameter of tread of driving wheels is 1.8 m, and			
	3. Swaying couple at speed arrived at in (2) above.			
15.	A four cylinder vertical engine has cranks 150 mm long. The	16	4	Analyze
	planes of rotation of the first, second and fourth cranks are			
	400 mm, 200 mm and 200 mm respectively from the third			
	crank and their reciprocating masses are 50 kg, 60 kg and 50			
	kg respectively. Find the mass of the reciprocating parts for			
	the third cylinder and the relative angular positions of the			
	cranks in order that the engine may be in complete primary			
	balance.			
16.	Derive the expression for primary and secondary unbalanced	16	6	Create
	forces of reciprocating masses.			
17.	Write short notes on partial balancing of unbalanced primary	16	5	Evaluate
1/.	forces in a reciprocating engine.	10	5	Lvaluate
	101005 III a recipiocaulig cligille.		1	

18.	Enumerate on the effect of partial balancing of reciprocating	16	5	Evaluate
	parts of two cylinder locomotives.			

