SRM VALLIAMMAI ENGINEERING COLLEGE

SRM Nagar, Kattankulathur – 603 203

DEPARTMENT OF COMPUTER APPLICATIONS

QUESTION BANK

II SEMESTER

PMC304- BIG DATA ANALYTICS

Regulation – 2024

Academic Year 2024 – 25 (Even)

Prepared by

Mr. M. Nagarajan, Assistant Professor (O.G)/MCA

SRM VALLIAMMAI ENGINEERING COLLEGE

SRM Nagar, Kattankulathur- 603 203

DEPARTMENT OF COMPUTER APPLICATIONS

Academic Year 2025-2026 QUESTION BANK- ODD SEMESTER

SUBJECT : PMC304 - BIG DATA ANALYTICS YEAR / SEM: I / II SEM MCA

	UNIT-1 UNDERSTANDING BIG DATA				
Introc we techno	Introduction to big data – convergence of key trends – unstructured data – industry Examples of big data – web analytics – big data applications – big data technologies – introduction to Hadoop – open source technologies – cloud and big data – mobile business intelligence – Crowd sourcing analytics inter and trans firewall analytics.				
	$\mathbf{PART} - \mathbf{A}$				
Q. No	Question	Level	Competence		
1	Define Big Data?	BTL 1	Remember		
2	Compare Big Data and Conventional Data.	BTL 2	Understand		
3	List the various dimensions of growth of Big Data.	BTL 1	Remember		
4	What is unstructured data?	BTL 1	Remember		
5	Define web analytics.	BTL 1	Remember		
6	List any two key trends that led to the emergence of Big Data	BTL 1	Remember		
7	Identify two examples of unstructured data.	BTL 1	Remember		
8	Describe the term "convergence of key trends" in Big Data.	BTL 2	Understand		
9	Name any two Big Data technologies.	BTL 1	Remember		
10	Describe the role of web analytics in Big Data applications.	BTL 2	Understand		
11	State the purpose of Hadoop.	BTL 1	Remember		
12	Compare between structured and unstructured data.	BTL 2	Understand		
13	State how cloud computing is used to manage Big Data.	BTL 1	Remember		
14	Outline the benefits of using open-source technologies in Big Data.	BTL 2	Understand		
15	Describe the usage of mobile business.	BTL 2	Understand		
16	Describe the different applications of Big Data	BTL 2	Understand		
17	Describe the concept of crowdsourcing analytics.	BTL 2	Understand		
18	Classify the role of cloud computing Big Data application	BTL 2	Understand		
19	Identify scenarios where inter-firewall analytics is essential.	BTL 3	Apply		
20	What is the use of mobile business intelligence in decision- making.	BTL 1	Analyze		

21	Define Cloud and Big Data Analytics.		BTL 1	Remember
22	Describe about HDFS		BTL 2	Understand
23	State the function of MapReduce		BTL 1	Remember
24	List the sources of Big Data.		BTL 1	Remember
	PART-B			
Q.No.	Question	Marks	Level	Competence
1	Develop the evolution of Big Data and discuss the convergence of key trends that have made it indispensable in today's industries.	16	BTL 3	Apply
2	Examine the characteristics of Big Data and the key trends that have contributed to its evolution	16	BTL 4	Analyze
3(a)	a. Analyze the differences between structured and unstructured data with examples.	8	BTL 4	Analyze
3(b)	Examine a solution to manage unstructured data in a social media platform.	8	BTL 4	Analyze
4	Compare traditional database systems and Big Data technologies in terms of scalability, cost, and efficiency	16	BTL 4	Analyze
5(a)	Identify the role of web analytics	8	BTL 3	Apply
5(b)	Apply the effectiveness of web analytics tools	8	BTL 3	Apply
6	Develop the Industry examples of Big Data	16	BTL 3	Apply
7	Identify how Big Data is used in the healthcare industry.	16	BTL 3	Apply
8	Analyse the role of unstructured data in Big Data processing and discuss its impact on decision-making in organisations.	16	BTL 4	Analyze
9(a)	Construct about Big Data	8	BTL 3	Apply
9(b)	Compare the features of Cloud and Big Data	8	BTL 4	Analyze
10(a)	Analyze Applications of Big Data in Social and Affiliate Marketing	8	BTL 4	Analyze
10(b)	Identify patterns of Fraud Detection with Near Real-Time Event Processing Framework Diagram	8	BTL 4	Analyze
11	Identify the implication of crowdsourcing analytics with real- world examples	16	BTL 3	Apply
12(a)	Analyze the key components of Hadoop with diagrammatic representation of the Hadoop Distributed File System (HDFS)	8	BTL 4	Analyze
12(b)	Construct about MapReduce	8	BTL 3	Apply
13	Build open-source technologies in Big Data and describe their functionalities.	16	BTL 3	Apply
14	Analyze how cloud platforms enable scalability and flexibility in Big Data solutions	16	BTL 4	Analyze
15	Analyse the benefits and limitations of crowdsourcing in data collection and analysis.	16)	BTL 4	Analyze

16(a)	Analyze mobile business intelligence	8	BTL 4	Analyze
16(b)	Discover key features of mobile business intelligence	8	BTL 4	Analyze
17(a)	Identify the significance of inter-firewall analytics	8	BTL 3	Apply
17(b)	Choose the Advantages of inter-firewall and trans-firewall	8	BTL 3	Apply

UNIT-2 NOSQL DATA MANAGEMENT

Introduction to NoSQL – Aggregate data models – Key-value and document data models – Relationships graph databases – Schemeless databases – Materialized views – Distribution models – Master-Slave Replication – Consistency – Cassandra – Cassandra data model – Cassandra examples – Cassandra clients.

	PART – A					
Q. No	Question	Level	Competence			
1	List the primary characteristics of NoSQL databases	BTL 1	Remember			
2	Define NoSQL and its significance in modern databases	BTL 1	Remember			
3	Identify two advantages of NoSQL over relational databases	BTL 2	Understand			
4	Compare SQL and NoSQL databases.	BTL 2	Understand			
5	Describe aggregate data models in NoSQL	BTL 2	Understand			
6	Give examples of two aggregate data models.	BTL 1	Remember			
7	Identify the advantages of using aggregate data models.	BTL 2	Understand			
8	Define the key-value data model.	BTL 1	Remember			
9	Describe the document data model in NoSQL.	BTL 2	Understand			
10	Compare between key-value and document data models.	BTL 2	Understand			
11	Describe graph databases.	BTL 2	Understand			
12	Define a scenario where graph databases are ideal for use.	BTL 1	Remember			
13	Define a schemeless database.	BTL 1	Remember			
14	State two benefits of schemeless databases.	BTL 1	Remember			
15	Define materialized views.	BTL 1	Remember			
16	Describe two advantages of using materialized views.	BTL 2	Understand			
17	Compare materialized views with regular database views.	BTL 2	Understand			
18	Define the term aggregate data models in NoSQL databases.	BTL 1	Remember			
19	Classify the three types of aggregate data models used in NoSQL	BTL 2	Remember			
20	Describe master-slave replication.	BTL 2	Understand			
21	What are the two advantages of master-slave replication	BTL 1	Remember			
22	Describe the Cassandra data model.	BTL 2	Understand			
23	What is the significance of a Cassandra data model	BTL 1	Remember			

24	24 Show the use of Cassandra for large-scale applications.		BTL 1	Remember
	PART-B			
Q.No.	Question	Marks	Level	Competence
1	Examine the characteristics and significance of NoSQL databases	16	BTL 4	Analyze
2(a)	Illustrate the differences between relational databases and NoSQL databases with examples.	8	BTL 3	Apply
2(b)	Analyze the role of NoSQL in handling unstructured and semi- structured data.	8	BTL 4	Analyze
3	Organize the NoSQL databases and explain their core features.	16	BTL 3	Apply
4	Analyze the aggregate data models and explain their relevance in NoSQL systems	16	BTL 4	Analyze
5	Illustrate the implementation of aggregate data models with real-world examples.	16	BTL 3	Apply
6(a)	Identify the key-value data model.	8	BTL 3	Apply
6(b)	Organize the document data model.	8	BTL 3	Apply
7(a)	Compare the key-value and document data models	8	BTL 4	Analyze
7(b)	Examine the graph data model.	8	BTL 4	Analyze
8	Examine how graph databases manage complex relationships with examples.	16	BTL 4	Analyze
9(a)	Analyse the use of graph databases in social media applications	10	BTL 3	Apply
9(b)	Evaluate the advantages and limitations of graph databases	6	BTL 4	Analyze
10	Classify the concept of master-slave replication in NoSQL databases.	16	BTL 4	Analyze
11	Investigate the schemeless databases and state their key benefits.	16	BTL 4	Analyze
12(a)	Examine how schemeless databases adapt to rapidly changing data structures	8	BTL 4	Analyze
12(b)	Compare master-slave replication with peer-to-peer replication models.	8	BTL 4	Analyze
13(a)	Compare about Consistency and Read Consistency	8	BTL 4	Analyze
13(b)	Examine Replication consistency with an Example Diagram	8	BTL 4	Analyze
14	Classify materialized views and analyze their role in query performance optimization.	16	BTL 4	Analyze

15	Illustrate the Cassandra architecture and list the features of Cassandra.	16	BTL 3	Apply
16(a)	Analyse the advantages of Cassandra.	6	BTL 3	Apply
16(b)	Investigate the impact of the CAP theorem in NoSQL databases.	10	BTL 4	Analyze
17	Examine the scalability and fault tolerance of Cassandra in large-scale applications.	16	BTL 4	Analyze

UNIT-3 MAP REDUCE APPLICATIONS

MapReduce workflows – unit tests with MRUnit – test data and local tests – anatomy of Map Reduce job run – classic Map-reduce – YARN – failures in classic Map-reduce and YARN – job scheduling – shuffle and sort – task execution – MapReduce types – input formats – output formats.

PART – A				
Q. No	Question	Level	Competence	
1	Define MapReduce.	BTL 1	Remember	
2	Infer the primary phases of a MapReduce workflow.	BTL 2	Understand	
3	Explain the role of the Mapper function in a MapReduce.	BTL 2	Understand	
4	Identify the role of the Reducer function in MapReduce.	BTL 1	Remember	
5	Define MRUnit and its purpose.	BTL 1	Remember	
6	List the benefits of using MRUnit for unit testing MapReduce jobs	BTL 1	Remember	
7	Explain the importance of unit testing in MapReduce workflows.	BTL 2	Understand	
8	Compare the advantages of MRUnit over manual testing	BTL 2	Understand	
9	Define the anatomy of a MapReduce job run	BTL 1	Remember	
10	List the key components involved in a MapReduce job run.	BTL 1	Remember	
11	Explain the lifecycle of a MapReduce job run.	BTL 2	Understand	
12	Define YARN and its purpose.	BTL 1	Remember	
13	Illustrate the architecture of YARN with a diagram.	BTL 2	Understand	
14	Compare Classic MapReduce and YARN.	BTL 2	Understand	
15	Explain how YARN handles task failures.	BTL 2	Understand	
16	Define job scheduling in MapReduce.	BTL 1	Remember	

17	List different job scheduling algorithms used in MapReduce.		BTL 1	Remember
18	What is the purpose of the shuffle and sort phase?		BTL 1	Remember
19	Explain how sorting is performed in MapReduce.		BTL 2	Understand
20	Define task execution in MapReduce		BTL 1	Remember
21	Illustrate the role of task trackers in Classic MapReduce		BTL 2	Understand
22	List the Phases of Data Flow in HADOOP.		BTL 2	Understand
23	Define output formats in MapReduce and their significance		BTL 1	Remember
24	Illustrate how to implement a custom output format.		BTL 2	Understand
	PART-B			
Q.No.	Question	Marks	Level	Competence
1	Construct the architecture of the MapReduce framework in Hadoop	16	BTL 3	Apply
2	Illustrate the phases of a MapReduce job, focusing on the roles of mappers and reducers	16	BTL 3	Apply
3(a)	Choose the significance of the shuffle and sort phases in the MapReduce workflow.	8	BTL 3	Apply
3(b)	Compare MRUnit testing with traditional testing methods for MapReduce.	8	BTL 3	Apply
4	Examine the importance of unit testing in MapReduce workflows with MRUnit.	16	BTL 4	Analyze
5	Evaluate the process of writing MRUnit test cases for a word count MapReduce program.	16	BTL 4	Analyze
6	Differentiate the benefits and limitations of using MRUnit for validating MapReduce jobs.	16	BTL 4	Analyze
7	Examine a test plan for a MapReduce application using MRUnit.	16	BTL 3	Apply
8	Develop the anatomy of a MapReduce job run with detailed steps and a diagram	16	BTL 3	Apply
9	Differentiate the job execution flow in classic MapReduce and YARN.	16	BTL 3	Apply
10(a)	Classify the key features of the classic MapReduce architecture.	8	BTL 4	Analyze
10(b)	Examine the advantages of YARN over classic MapReduce in handling failures	8	BTL 4	Analyze
11(a)	Investigate the fault-tolerance mechanisms implemented in YARN	8	BTL 4	Analyze
11(b)	Differentiate the handling of node failures in classic MapReduce and YARN.	8	BTL 4	Analyze
12	Identify the importance of job scheduling in distributed computing systems.	16	BTL 3	Apply

13(a)	Analyze the impact of poor scheduling on the performance of MapReduce jobs.	16	BTL 4	Analyze
13(b)	Summarize the enhancements to the job scheduling mechanism in YARN to improve efficiency.	8	BTL 3	Apply
14	Solve the shuffle and sort phases in MapReduce with an example.	8	BTL 3	Apply
15	Examine he challenges in implementing the shuffle and sort operations efficiently.	16	BTL 4	Analyze
16	Analyze the challenges in monitoring and debugging a MapReduce job run.	16	BTL 4	Analyze
17	Examine the role of the Fair Scheduler in YARN with practical examples.	16	BTL 4	Analyze

UNIT-4 BASICS OF HADOOP

PART – A				
Q. No	Question	Level	Competence	
1	Define Hadoop and its primary use.	BTL 1	Remember	
2	Describe the purpose of Hadoop Pipes?	BTL 2	Understand	
3	Define serialization in Hadoop.	BTL 1	Remember	
4	State the function of Avro in Hadoop?	BTL 2	Understand	
5	Show the Cassandra in the context of big data?	BTL 2	Understand	
6	Define data compression in Hadoop I/O.	BTL 1	Remember	
7	Define the concept of scaling out in Hadoop.	BTL 1	Remember	
8	Summarize the design principles of HDFS.	BTL 2	Understand	
9	State the data integrity important in Hadoop I/O?	BTL 1	Remember	
10	Explain how Hadoop integrates with Cassandra.	BTL 2	Understand	
11	Explain the concept of data flow in Hadoop systems.	BTL 2	Understand	
12	Infer the purpose of file-based data structures in Hadoop?	BTL 2	Understand	
13	Outline Avro serialization for a given data set.	BTL 2	Understand	
14	Define the data integrity in HDFS?	BTL 1	Remember	
15	Interpret how Cassandra managing a large-scale distributed database.	BTL 2	Understand	
16	Classify Hadoop I/O operations for handling unstructured data.	BTL 2	Understand	
17	How Hadoop Streaming with Hadoop Pipes.	BTL 1	Remember	
18	Compare between HDFS and traditional file systems.	BTL 2	Understand	

19	Break down the data flow process in HDFS.		BTL 1	Remember
20	List the challenges in integrating Hadoop with Cassandra?		BTL 1	Remember
21	Define Avro with other file-based data structures in Hadoop.		BTL 1	Remember
22	How the performance of Hadoop I/O when handling large datasets.		BTL 1	Remember
23	Tell the pros and cons of using the Java interface for HDFS operations.		BTL 1	Remember
24	Describe the significance of the Java interface in HDFS.		BTL 2	Understand
	PART-B	1		
Q.No.	Question	Marks	Level	Competence
1(a)	Applty the concept of data flow in Hadoop.	8	BTL 3	Apply
1(b)	Identify the features of the Hadoop Distributed File System (HDFS).	8	BTL 3	Apply
2	Examine the primary components of Hadoop architecture.	16	BTL 4	Analyze
3	Investigate the Hadoop pipes, and how are they used?	16	BTL 4	Analyze
4	Break Down the complete details of Avro, and why is it used in Hadoop?	16	BTL 4	Analyze
5(a)	Compare Hadoop Streaming and Hadoop Pipes in terms of design and functionality.	8	BTL 4	Analyze
5(b)	Illustrate the Java interface of HDFS with examples.	8	BTL 3	Apply
6	Develop how Cassandra integrates with Hadoop.	16	BTL 3	Apply
7	Analyze the process of Compression, Serialization and its importance in Hadoop.	16	BTL 4	Analyze
8	Classify Avro for data serialization in a Hadoop-based system	16	BTL 4	Analyze
9(a)	Contrast HDFS with other distributed file systems.	8	BTL 4	Analyze
9(b)	Identify the advantages and disadvantages of using Avro in Hadoop.	8	BTL 3	Apply
10	Analyze the significance of scaling out in Hadoop.	16	BTL 4	Analyze
11	Break Down the design of Hadoop's Distributed File System (HDFS).	16	BTL 4	Analyze
12	Examine the process of serialization and its importance in Hadoop.	16	BTL 4	Analyze
13(a)	Differentiate between serialization and deserialization in Hadoop I/O.	8	BTL 4	Analyze
13(b)	Break down the integration process of Cassandra with Hadoop.	8	BTL 4	Analyze
14	Examine the architecture and workflow of Hadoop in managing big data.	16	BTL 4	Analyze

15	Examine the MapReduce program to analyze a dataset using Hadoop.	16	BTL 4	Analyze
16(a)	Build the implications of using Avro over other serialization frameworks.	8	BTL 3	Apply
16(b)	Analyze the role of file-based data structures in Hadoop.	8	BTL 4	Analyze
17	Apply HDFS concepts to design a storage system for large-scale data.	16	BTL 3	Apply

UNIT-5 HADOOP RELATED TOOLS

Hbase – data model and implementations – Hbase clients – Hbase examples – praxis. Pig – Grunt – pig data model – Pig Latin – developing and testing Pig Latin scripts. Hive – data types and file formats – HiveQL data definition – HiveQL data manipulation– HiveQL queries.

PART – A							
Q. No	Question	Level	Competence				
1	Define what HBase is and explain how it differs from relational databases.	BTL 1	Remember				
2	Show HBase differs from traditional relational databases.	BTL 2	Understand				
3	List the key features of the HBase data model.	BTL 1	Remember				
4	Illustrate the key features of the HBase data model with examples.	BTL 2	Understand				
5	Recall the role of HBase clients in data access.	BTL 1	Remember				
6	Summarize the function of HBase clients in facilitating database access.	BTL 2	Understand				
7	Define Praxis in the context of HBase.	BTL 1	Remember				
8	Infer the concept of Praxis in HBase and its significance.	BTL 2	Understand				
9	What is Pig in the Hadoop ecosystem.	BTL 1	Remember				
10	Outline the role of Pig in the Hadoop ecosystem and its applications.	BTL 2	Understand				
11	State the purpose of Grunt in Pig.	BTL 1	Remember				
12	Demonstrate how Grunt is used in Pig scripting.	BTL 2	Understand				
13	Define Pig Latin and mention its primary use.	BTL 1	Remember				
14	Clarify the purpose and primary use of Pig Latin in data processing.	BTL 2	Understand				
15	List the common data types available in Hive.	BTL 1	Remember				
16	Compare the common data types in Hive with examples of their use.	BTL 2	Understand				
17	Recall the default file format used in Hive.	BTL 1	Remember				
18	Classify why the default file format in Hive is significant for data storage.	BTL 2	Understand				
19	Define how HBase clients interact with the database.	BTL 1	Remember				
20	Infer the interaction process of HBase clients with the database.	BTL 2	Understand				

21	List the components of the Pig data model used in data processing.		BTL 1	Remember			
22	Classify how the Pig data model contributes to effective data processing.		BTL 2	Understand			
23	State the importance of Grunt in Pig scripting.		BTL 1	Remember			
24	Summarize the importance of Grunt as a tool in scripting with Pig.		BTL 2	Understand			
PART – B							
Q. No	Question	Marks	Level	Competence			
1	Construct how to set up an HBase database with a basic schema and perform data insertion using HBase clients.	16	BTL 3	Apply			
2	Develop a Pig Latin script to analyze and filter large datasets based on a specific condition.	16	BTL 3	Apply			
3	Analyze how to configure and use Grunt to debug and test Pig Latin scripts effectively.	16	BTL 4	Analyze			
4(a)	Examine a Hive table with appropriate data types and file formats for storing IoT sensor data.	8	BTL 4	Analyze			
4(b)	Analyze a HiveQL query to filter and extract data from a partitioned table.	8	BTL 4	Analyze			
5	Develop a workflow using HiveQL to create, insert, and query a Hive table for e-commerce sales data	16	BTL 3	Apply			
6(a)	Analyze how Pig Latin's data model accommodates both structured and unstructured data in workflows.	8	BTL 4	Analyze			
6(b)	Compare the performance of Grunt and HiveCLI for managing big data workflows.	8	BTL 4	Analyze			
7	Construct a HiveQL query to transform unstructured log data into a structured format and analyze error trends.	16	BTL 3	Apply			
8(a)	Identify how the choice of data types in Hive affects storage and computation efficiency.	8	BTL 3	Apply			
8(b)	Analyze the differences in data manipulation techniques between HiveQL and Pig Latin.	8	BTL 4	Analyze			
9	Apply the concept of Praxis in HBase to optimize database read and write operations for a banking application.	16	BTL 3	Apply			
10(a)	Analyze the effectiveness of Praxis in real-world HBase applications, particularly in high-volume data processing.	8	BTL 4	Analyze			
10(b)	Examine the performance implications of using nested data structures in the Pig data model.	8	BTL 4	Analyze			
11	Apply how to integrate Hive with HBase to process real-time streaming data.	16	BTL 3	Apply			
12	Develop a Pig Latin script to group and sort data by a specified attribute.	16	BTL 3	Apply			
13	Develop and execute a Pig Latin script for performing a word count operation on large datasets.	16	BTL 3	Apply			
14(a)	Analyze the differences between the HBase data model and traditional relational database models in practical scenarios.	8	BTL 4	Analyze			
14(b)	Examine the scalability of HBase for storing and retrieving time- series data in a distributed environment.	8	BTL 4	Analyze			

15	Compare and contrast the implementation of joins in Pig Latin and HiveQL with examples.	16	BTL 4	Analyze
16(a)	Identify the role of Grunt in enhancing the development and debugging of Pig Latin scripts.	8	BTL 3	Apply
16(b)	Analyze how Pig Latin scripts handle large-scale data processing compared to HiveQL queries.	8	BTL 4	Analyze
17	Classify the advantages and limitations of using HiveQL for handling structured and unstructured data	16	BTL 4	Analyze