SRM VALLIAMMAI ENGINEERING COLLEGE

(Autonomous Institution)

SRM Nagar, Kattankulathur – 603 203

DEPARTMENT OF

ELECTRICAL AND ELECTRONICS ENGINEERING M.E POWER SYSTEMS ENGINEERING

QUESTION BANK

VII SEMESTER

PPS202 – WIND AND SOLAR ENERGY SYSTEMS

Regulation – 2023

Academic Year 2024–25

EVEN SEMESTER

Prepared by

Dr. R.Arivalahan, Professor

SRM VALLIAMMAI ENGINEERING COLLEGE 🍃

SRM Nagar, Kattankulathur – 603 203.

DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING OUESTION BANK

SUBJECT & SUBJECTCODE: PPS202 – WIND AND SOLAR ENERGY SYSTEMS

SEM / YEAR: II /I ME PSE

UNIT I – WIND ENERGY CONVERSION

SYLLABUS: Wind resources-Nature and occurrence of wind –Power in the wind – Wind characteristics –Principles of wind energy conversions-Components of wind energy conversion system(WECS)- Classification of WECS- Advantages and disadvantages of WECS

	PART – A (2 Marks)			
Q.No	Questions GINE EP	BT Level	Competence	CO
1.	What is the primary source of wind energy?	BTL-1	Remember	
2.	Explain the renewable nature of wind power.	BTL-1	Remember	CO1
3.	Define wind speed and its importance in wind energy	BTL-2	Understand	
4.	How does wind direction influence the design of wind turbines?		Remember	
5.	Describe the process by which wind turbines convert kinetic energy into mechanical energy.	BTL-2	Understand	
6.	What role does the generator play in a Wind Energy Conversion System (WECS)?	BTL-2	Understand	CO2
7.	Identify the main components of a wind turbine's nacelle.	BTL-1	Remember	CO3
8.	Explain the purpose of the tower in a wind energy system.	BTL-2	Understand	CO1
9.	Distinguish between Horizontal Axis Wind Turbines (HAWT) and Vertical Axis Wind Turbines (VAWT).	BTL-4	Analyze	CO1
10.	Which type of wind turbine is more common, why?	BTL-2	Understand	CO1
11.	Discuss the environmental advantages of wind energy compared to fossil fuels.		Remember	CO3
12.	How does wind energy contribute to reducing	BTL-3	Apply	CO1

dependence on non-renewable resources?			
13. Express the mechanism of Yaw control.	BTL-5	Evaluate	CO1
14. Illustrate the site selection factor for wind turbine	BTL-2	Understand	CO3
15. Define tip speed ratio (TSR)	BTL-2	Understand	CO3
16. Discuss the impact of wind energy on reducing greenhouse gas emissions	BTL-1	Remember	CO3
17. Examine the challenges associated with the aesthetic concerns related to wind turbines	BTL-6	Create	CO3
18. Predict potential technological advancements to address the intermittency of wind energy.		Create	CO3
19. Given a scenario, explain how wind speed influences the power output of a wind turbine.		Analyze	CO1
20. Evaluate the economic considerations for implementing wind energy projects.		Apply	CO1
21. Analyze the social implications of establishing wind farms in a local community	g BTL-4	Analyze	CO1
22. Discuss the environmental impact of wind energy projects on ecosystems	BTL-3	Apply	CO1
23. Compare the initial costs of setting up wind energy systems with their long-term benefits.	BTL-4	Analyze	CO1
24. Evaluate the role of government policies in promoting or hindering the growth of wind energy		Analyze	CO1
PART – B			1
(16 Marks)1.What is Wind power and derive the equation of power in wind	BTL-3	Apply	CO1
2. Define Tip speed ratio and write the necessary equation and also write the advantages of wind power systems	BTL-4	Analyze	CO1
3. Explain in detail about the pitch control and Yaw control	BTL-1	Remember	CO1
 4. Discuss Principle used in the measurement of speed of the wind an Tabulate the main applications of wind energy. 		Create	CO1
5. Explain the construction and working of Vertical Axis Wind Turbine (VAWT).	BTL-3	Apply	CO1

6.	Explain about the various Types of Wind Power	BTL-1	Remember	CO1
	Plant (WPPs).			001
7.	Explain about the Components of WPPs with	BTL-2	Understand	CO1
	necessary diagram			001
8.	Describe With a neat sketch about Horizontal	BTL-2	Understand	CO1
	axis wind mills.			
9.	Summarize the working principle of Wind	BTL-5	Evaluate	CO1
	Energy Conversion System (WECS)			
10.	Distinguish the difference between vertical Axis	BTL-4	Analyze	CO1
	Wind Turbine and Horizontal Axis Wind Turbine.			
11.	Explain in details about the various components	BTL-1	Remember	CO1
	present in the wind power plant with neat sketch.			001
12.	Classify the various types of rotor used in the	BTL-4	Analyze	CO1
	wind turbine			
13.	Generalize the factors to be consider for the site	BTL-6	Create	CO1
	selection to install the wind power plant.			
14.	Evaluate the potential impact of advancements in	BTL-4	Analyze	CO1
	energy storage technolo <mark>gy on addre</mark> ssing the			
	intermittency challenge in wind energy			
	Evaluate the advantages and disadvantages of		Understand	CO1
	horizontal axis wind turbines in comparison to			
	vertical axis wind turbines.	BTL-5	Evaluate	001
	Given a scenario, recommend the most suitable		Evaluate	CO1
	type of wind turbine (HAWT or VAWT) based on			
	specific geographical and environmental conditions			
17.	Given a case study, analyze the potential social	BTL-4	Analyze	CO1
	and cultural conflicts arising from the			
	establishment of wind farms in a community			

UNIT II - WIND ELECTRIC GENERATOR

SYLLABUS: Characteristics of Induction generator-Permanent magnet generators-single phase operation of induction generators-Doubly fed generators-Grid Connected and Standalone systems-Controllers for wind driven self –excited systems and capacitor excited isolated systems-Synchronized operation with grid supply-Real and reactive power control. PART – A (2 Marks) **BT Level** CO Q.No Ouestions Competence Define the main characteristic of an induction BTL-2 Understand CO2 1. generator that allows it to operate without an external power source Explain how an induction generator self-excites Understand CO2 2. BTL-2 during operation Discuss the advantages of using permanent magnet Remember CO2 3. BTL-1 generators in wind energy applications Compare the efficiency of permanent magnet 4. BTL-4 CO2 Analyze generators with other types of generators in the context of wind energy conversion Explain the conditions under which an induction BTL-2 Understand CO2 5. generator can operate in single-phase mode Discuss the limitations of single-phase operation in BTL-1 Remember CO2 6. induction generators and potential solutions. Define the term "doubly fed" in the context of Understand CO2 7. BTL-2 generators and explain its significance in wind energy systems. Analyze the advantages of using doubly fed CO2 8. BTL-4 Analyze generators over other types in terms of control and efficiency. Understand CO2 9. Differentiate between grid-connected and BTL-2 standalone wind energy systems, highlighting their key features. Explain the challenges associated with integrating BTL-4 10. Analyze CO2 wind energy into the existing electrical grid 11. Describe the role of controllers in maintaining the BTL-3 CO2 Apply stability of wind-driven self-excited systems BTL-3 12. Evaluate the impact of controller settings on the CO2 Apply efficiency of a wind-driven self-excited system Understand CO₂ 13. Explain the function of capacitors in isolated BTL-2 wind energy systems and their role in system stability Discuss the factors influencing the selection of 14. BTL-4 CO2 Analyze capacitor parameters for wind energy systems Outline the steps involved in synchronizing a wind BTL-3 15. CO2 Apply

	energy system with the grid supply			
16.	Examine the importance of synchronization in maintaining the stability of the grid-connected wind energy system	BTL-4	Analyze	CO2
17.	Define real power and reactive power in the context of wind energy systems	BTL-5	Evaluate	CO2
18.	Discuss the methods employed for real and reactive power control in wind energy converters	BTL-5	Evaluate	CO2
19.	Explain the significance of pitch control in wind turbines and its impact on power output	BTL-6	Create	CO2
20.	Evaluate the trade-offs involved in using different types of controllers for wind-driven self-excited systems	BTL-4	Analyze	CO2
21.	Discuss the role of energy storage systems in capacitor-excited isolated wind energy systems	BTL-3	Apply	CO2
22.	Analyze the impact of varying load conditions on the performance of a capacitor-excited isolated system	BTL-4	Analyze	CO2
23.	Examine the importance of frequency control in maintaining synchronized operation with the grid	BTL-4	Analyze	CO2
24.	Given a scenario, propose strategies for improving the efficiency of real and reactive power control in a grid-connected wind energy system	BTL-5	Evaluate	CO2
	PART – B (16 Marks)			
1.	Explain the principle behind self-excitation in induction generators and how it enables their operation without an external power source	BTL-2	Understand	CO2
2.	Compare the operational efficiency of induction generators with and without self-excitation in a wind energy context	BTL-4	Analyze	CO2
3.	Discuss the key advantages of utilizing permanent magnet generators in wind energy systems, emphasizing their impact on overall performance	BTL-4	Analyze	CO2
4.	Analyze the cost-effectiveness of implementing permanent magnet generators in comparison to other generator types for wind energy applications	BTL-6	Create	CO2
5.	Examine the conditions under which an induction generator can efficiently operate in single-phase mode, and provide practical applications for such scenarios	BTL-4	Analyze	CO2

6.	Evaluate the challenges associated with single-	BTL-4	Analyze	CO2
	phase operation in induction generators, proposing potential solutions to enhance performance			
7.	.Define the term "doubly fed" concerning	BTL-2	Understand	CO2
	generators and explain its significance in			
	enhancing control capabilities in wind energy systems			
8.	Analyze how the doubly fed feature contributes to	BTL-4	Analyze	CO2
	the overall efficiency and stability of wind energy			
9.	systems Explain the key differences between grid-connected	BTL-2	Understand	CO2
9.	and standalone wind energy systems, highlighting	DIL-2	Understand	02
	the advantages and disadvantages of each			
10.	Discuss the technical challenges and solutions	BTL-4	Analyze	CO2
	involved in integrating wind energy into existing		•	
	electrical grids, considering grid stability and			
	reliability.			
11.	Describe the role of pitch control systems in wind	BTL-3	Apply	CO2
	turbines and how they contribute to optimizing			
12.	power outputEvaluate the impact of different controller settings	BTL-4	Analyze	CO2
12.	on the dynamic response of wind-driven self-	DIL-4	7 mary 20	02
	excited systems, considering both stability and	GE		
	efficiency			
13.	Explain the function of capacitors in isolated wind	BTL-2	Understand	CO2
	energy systems and how they influence the stability			
1 4	of the overall system		A 1	C02
14.	Evaluate the trade-offs involved in selecting	BTL-4	Analyze	CO2
	capacitor parameters for a specific wind energy application, considering both technical and			
	economic factors			
15.	Outline the essential steps involved in synchronizing	BTL-3	Apply	CO2
	a wind energy system with the grid supply,			
	emphasizing safety and efficiency			
16.	Examine the role of frequency control in	BTL-4	Analyze	CO2
	maintaining synchronized operation with the grid,			
	and discuss potential challenges and solutions		4	
17.	Define real power and reactive power in the context		Understand	CO2
	of wind energy systems, and discuss the methods			
	employed for effective control of both parameters			

UNIT III – PHOTO VOLTAIC MODELS

SYLLABUS: Solar cells and panels-structure of PV cells –Semiconductor materials for PV cells- I-V Characteristics of PV systems-V models and equivalent circuits –Effects of irradiance and temperature on PV characteristics.

	PART – A (2 Marks)			
Q.N 0	Questions	BT Level	Competence	CO
1.	Define the term "photovoltaic" and explain how solar cells contribute to the generation of electricity	BTL-1	Remember	CO3
2.	Discuss the primary applications of solar panels and their role in renewable energy systems	BTL-2	Understand	CO3
3.	Explain the significance of the anti-reflective coating in enhancing the performance of PV cells.		Apply	CO3
4.	Evaluate the significance of the "knee point" in the I- V curve of a PV system and its relevance to maximum power output		Analyze	CO3
5.	Analyze the effects of temperature variations on the efficiency and performance of PV cells	BTL-1	Remember	CO3
6.	Examine the role of the front and rear contacts in the structure of a photovoltaic cell and their impact on electrical conductivity.		Remember	CO3
7.	Describe the basic structure of a photovoltaic cell, highlighting the function of each layer in converting sunlight into electricity		Remember	CO3
3.	Compare the characteristics of p-type and n-type semiconductor materials used in the fabrication of photovoltaic cells		Understand	CO3
).	Discuss the role of doping in semiconductor materials for improving the efficiency of PV cells	BTL-3	Apply	CO3
10.	Discuss the role of doping in semiconductor materials for improving the efficiency of PV cells	BTL-1	Remember	CO3
11.	Explain the I-V characteristics of a photovoltaic system and how they represent the electrical behavior under varying conditions		Understand	CO3
2.	Define the equivalent circuit model of a photovoltaic cell and explain how it represents the electrical behavior of the cell		Evaluate	CO3
13.	Discuss the role of the diode in the equivalent circuit of a PV cell and its impact on the overall		Analyze	CO3

	performance.			
14.	Express the basic principle of SPV conversion	BTL-2	Understand	CO3
15.	Formulate the I-V Characteristics of PV System	BTL-6	Create	CO3
16.	List the different types of PV Systems.	BTL-5	Evaluate	CO3
17.	Illustrate the difference between monocrystalline and polycrystalline solar panels, considering efficiency and cost factors		Understand	CO3
18.	Explain the impact of changes in irradiance on the electrical characteristics of a photovoltaic cell	BTL-3	Apply	CO3
19.	Discuss the importance of encapsulation in protecting the internal components of PV cells from environmental factors.	BTL-1	Remember	CO3
20.	Evaluate the advantages and disadvantages of thin- film solar cells in comparison to traditional silicon- based cells.		Create	CO3
21.	Examine the environmental considerations in the selection of semiconductor materials for sustainable photovoltaic technologies		Understand	CO3
22.	Explain how changes in the load resistance affect the I-V characteristics of a PV system	BTL-1	Remember	CO3
23.	Evaluate the role of the series and shunt resistances in the equivalent circuit of a PV cell and their impact on the performance		Understand	CO3
24.	Examine the strategies employed in photovoltaic systems to mitigate the negative effects of temperature on efficiency		Remember	CO3
	PART – B (16 Marks)			
1.		BTL-2	Understand	CO3
2.	Compare and contrast the structural characteristics of monocrystalline and polycrystalline solar panels.	BTL-3	Apply	CO3
3.	Provide a detailed explanation of the internal structure of a photovoltaic cell. Discuss the functions of each layer and how the overall design enhances the conversion efficiency of solar energy	BTL-1	Remember	CO3
4.		BTL-4	Analyze	CO3

	contributing to the overall efficiency of solar cells.			
5.	Explain the I-V characteristics of a photovoltaic system. Discuss how variations in solar irradiance and temperature influence the shape and position of the I-V curve, and explain the significance of the maximum power point	BTL-4	Analyze	CO3
6.	Examine the Environmental impact of solar power generation.	BTL-2	Understand	CO3
7.	Define the equivalent circuit model of a photovoltaic cell. Analyze the components of the equivalent circuit, with a focus on the diode, and discuss how this model represents the electrical behavior of a solar cell.	BTL-4	Analyze	CO3
8.	Discuss in detail about the principle of Solar Photo Voltaic (SPV) conversion.	BTL-4	Analyze	CO3
9.	Explain the various types of Photo Voltaic (PV) Systems.	BTL-4	Analyze	CO3
10	Explain in detail about the construction of solar cell, solar module and solar array.	BTL-1	Remember	CO3
11.	Describe in detail about the PV Module equivalent Circuit and its I-V Characteristics	BTL-1	Remember	CO3
12.	Discuss about the working operation of Photovoltaic (PV) system in series and parallel connections	BTL-4	Analyze	CO3
13.	Examine the impact of changes in solar irradiance on the electrical characteristics of a photovoltaic cell. Discuss strategies employed in photovoltaic systems to optimize power output under varying irradiance conditions	BTL-5	Evaluate	CO3
14.	Formulate the application of Photovoltaic system in various fields.	BTL-6	Create	CO3
15.	Analyze the effects of temperature variations on the efficiency and performance of PV cells. Discuss thermal management strategies and technological advancements aimed at mitigating the negative impact of temperature on solar power generation.	BTL-1	Remember	CO3
16.		BTL-4	Analyze	CO3
17.	Evaluate the series and parallel connection of Solar Photovoltaic system with neat sketch	BTL-1	Remember	CO3

UNIT IV PHOTO VOLTAIC ENERGY CONVERSION SYSTEM

SYLLABUS: Basic Photo voltaic system for power generation-Advantages and disadvantages of photo voltaic solar energy conversion –Application of solar photovoltaic system-Components of PV systems –Design of PV systems- Power condition and storage arrangement-Maximum Power Point Tracking (MPPT) – Introduction to string inverters.

Part-A (2 Marks)				
Q.No	Questions	BT Level	Competence	COs
1	Define a basic photovoltaic (PV) system and explain how it converts sunlight into electrical power	BTL-2	Understand	CO4
2	Discuss the primary function of a charge controllerin a basic PV system and its role in optimizingbattery health.	BTL-1	Remember	CO4
3	List three advantages of photovoltaic solar energy conversion over conventional power generation methods	BTL-1	Remember	CO4
4	Analyze two disadvantages associated with photovoltaic solar energy conversion and propose potential solutions.	BTL-4	Analyze	CO4
5	Provide examples of practical applications of solar photovoltaic systems in both residential and industrial settings.	BTL-4	Analyze	CO4
6	Discuss the economic benefits of integrating solar photovoltaic systems into off-grid or remote areas.	BTL-4	Analyze	CO4
7	Identify and explain the role of the major components in a PV system, including solar panels, charge controllers, inverters, and batteries.	BTL-2	Understand	CO4
8	Evaluate the importance of bypass diodes in solar panels and how they enhance the reliability of PV systems.	BTL-4	Analyze	CO4
9	Discuss the factors to consider when designing a PV system for a residential building, including location, load assessment, and system sizing	BTL-2	Understand	CO4
10	Explain the significance of shading analysis in the design of PV systems and how it affects the overall efficiency of the system	BTL-2	Understand	CO4
11	Define power conditioning in the context of PV systems and explain the role of inverters in this process.	BTL-3	Apply	CO4
12	Evaluate the advantages of incorporating energy storage systems, such as batteries, in PV systems	BTL-4	Analyze	CO4

13	Explain the concept of Maximum Power Point Tracking (MPPT) and its importance in optimizing	BTL-5	Evaluate	CO4
	the performance of solar panels			
14	Discuss the role of MPPT algorithms in adjusting	BTL-6	Create	CO4
11	the operating point of a PV system for maximum	DILO	Cicuto	
	power output.			
15	Define a string inverter and explain how it is	BTL-1	Remember	CO4
	different from other types of inverters used in PV			
	systems			
16	Discuss the advantages of using string inverters in	BTL-1	Remember	CO4
	large-scale solar photovoltaic installations			
17	Examine the significance of net metering in the	BTL-2	Understand	CO4
	context of grid-tied photovoltaic systems			
18	Discuss the environmental impact of	BTL-3	Apply	CO4
	manufacturing and disposing of photovoltaic			
	panels in the life cycle of a PV system			
19	Evaluate the impact of intermittent sunlight on the	BTL-4	Analyze	CO4
	efficiency of photovoltaic solar energy conversion.			
20	Discuss the potential advantages and	BTL-6	Create	CO4
	disadvantages of integrating photovoltaic systems			
	with energy			
21	Explain how solar photovoltaic systems can	BTL-1	Remember	CO4
	contribute to energy independence for both			
	residential and commercial users			
22	Analyze the role of government incentives and	BTL-4	Analyze	CO4
	policies in promoting the widespread adoption of			
	solar photovoltaic systems.			
23	Discuss the advancements in solar panel	BTL-3	Apply	CO4
	technologies and how they impact the efficiency			
- 24	and cost-effectiveness of PV systems.		A 1	004
24	Examine the role of grounding systems in PV	BTL-4	Analyze	CO4
	installations and their significance in ensuring			
	safety and system reliability. Part-B			
	(16 Marks)			
1	Describe the key components of a basic	BTL-1	Remember	CO4
	photovoltaic system for power generation. Discuss			
	how each component contributes to the overall			
	functionality of the system			
2	Examine the role of a charge controller in a	BTL-1	Remember	CO4
	photovoltaic system. Illustrate how a charge			
	controller optimizes battery health and discuss the			

	implications of not using one in a PV system			
3	Provide a comprehensive analysis of three advantages associated with photovoltaic solar energy conversion. Discuss specific examples and real-world applications that highlight these advantages	BTL-4	Analyze	CO4
4	Critically evaluate two disadvantages of photovoltaic solar energy conversion. Explore potential technological advancements or strategies to mitigate these disadvantages	BTL-3	Apply	CO4
5	Discuss the practical applications of solar photovoltaic systems in residential and industrial settings. Evaluate the economic and environmental benefits of adopting PV systems in these applications	BTL-4	Analyze	CO4
6	Examine the role of solar photovoltaic systems in providing power to off-grid or remote areas. Analyze the economic impact and social benefits of implementing PV systems in such locations	BTL-5	Analyze	CO4
7	Provide an in-depth explanation of the major components in a photovoltaic system, including solar panels, charge controllers, inverters, and batteries. Analyze how each component contributes to the overall efficiency and reliability of the system.	BTL-1	Remember	CO4
8	Evaluate the importance of bypass diodes in solar panels. Discuss scenarios in which these diodes are crucial and how they enhance the overall reliability and performance of PV systems	BTL-4	Analyze	CO4
9	Discuss the critical factors involved in designing a residential PV system, including location, load assessment, and system sizing. Analyze the interplay of these factors in ensuring an optimal design.	BTL-4	Analyze	CO4
10	Examine the significance of shading analysis in the design of PV systems. Discuss how shading impacts system efficiency and propose strategies to mitigate shading effects for maximum performance.	BTL-1	Remember	CO4
11	Define power conditioning in the context of PV systems and discuss the role of inverters in this	BTL-2	Understand	CO4

	process. Evaluate different types of inverters and			
	their applications in solar power generation			
12	Critically evaluate the advantages of incorporating	BTL-3	Apply	CO4
	energy storage systems, such as batteries, in PV			
	systems. Discuss different battery technologies			
	and their suitability for various applications in			
	solar power.			
13	Explain the concept of Maximum Power Point	BTL-4	Analyze	CO4
	Tracking (MPPT) and its importance in optimizing			
	the performance of solar panels. Discuss different			
	MPPT algorithms and their effectiveness in			
	various conditions			
14	Critically evaluate the role of MPPT in adjusting	BTL-6	Create	CO4
	the operating point of a PV system for maximum			
	power output. Discuss real-world scenarios where			
	MPPT is particularly beneficial and its impact on			
	overall system efficiency			
15	Define a string inverter and compare it with other	BTL-2	Understand	CO4
	types of inverters used in PV systems. Discuss the			
	advantages and disadvantages of string inverters			
	and their suitability for different applications			
16	Discuss the role of string inverters in large-scale	BTL-2	Understand	CO4
	solar photovoltaic installations. Evaluate their			
	performance, scalability, and the economic			
	considerations associated with the use of string			
	inverters in such projects			
17	Examine the role of net metering in grid-tied	BTL-4	Analyze	CO4
	photovoltaic systems. Discuss the benefits of net			
	metering for both consumers and the utility grid.			
	Evaluate the potential challenges and solutions			
	associated with net metering			

SYLLABUS: Wind farms and grid connections-grid related problems on absorption of wind -Grid interfacing arrangement-operation, control and technical issues of wind generated electrical energy-interconnected operation-hybrid systems. Recent advances in PV applications: Building integrated PV systems, Grid connected PV systems, Hybrid systems ,solar cars, solar energy storage systems and their economic aspects

Part-A (2 Marks)						
Q.No	Questions	BT Level	Competence	COs		
1	What is a wind farm, and how does it contribute to electricity generation	BTL-1	Remember	CO5		
2	Explain one challenge associated with connecting wind farms to the electrical grid	BTL-2	Understand	CO5		
3	Why is grid stability important in the context of wind energy absorption?	BTL-3	Apply	CO5		
4	Name one strategy to address intermittency issues related to wind energy absorption into the grid	BTL-4	Analyze	CO5		
5	Define grid interfacing arrangement in wind energy systems.	BTL-1	Remember	CO5		
6	What is the role of grid codes and standards in the design of grid interfacing arrangements	BTL-2	Understand	CO5		
7	Name any two operational challenge of wind- generated electrical energy.	BTL-3	Apply	CO5		
8	How can control strategies improve the stability of wind power integration	BTL-6	Create	CO5		
9	In simple terms, what does interconnected operation mean in wind energy systems?	BTL-4	Analyze	CO5		
10	Explain why communication systems are important for the interconnected operation of wind farms.	BTL-1	Remember	CO5		
11	Define a hybrid energy system and provide one advantage of integrating multiple energy sources	BTL-2	Understand	CO5		
12	What are the challenges associated with the integration of wind energy into hybrid systems?	BTL-4	Analyze	CO5		
13	What is a grid-connected PV system, and how does it contribute to decentralized energy generation	BTL-1	Remember	CO5		
14	Briefly explain the concept of building-integrated PV systems	BTL-2	Understand	CO5		
15	How does net metering impact the economic viability of grid-connected PV systems	BTL-3	Apply	CO5		
16	Name the environmental benefit of integrating PV systems into the electrical grid	BTL-1	Remember	CO5		
17	Explain, in simple terms, the concept of a hybrid energy system involving both PV and other renewable sources.	BTL-5	Evaluate	CO5		
18	What are the potential advantages of integrating multiple energy sources in a hybrid system	BTL-6	Create	CO5		
19	What is a solar car, and how does it utilize solar energy for propulsion	BTL-1	Remember	CO5		
20	Name the technological advancement that enables the	BTL-1	Remember	CO5		

	use of solar energy in electric vehicle			
21	How do energy storage systems contribute to the reliability of solar power?	BTL-2	Understand	CO5
22	In simple terms, what economic aspects should be considered when implementing solar energy storage systems?	BTL-2	Understand	CO5
23	How can government policies and incentives influence the adoption of wind and solar energy systems	BTL-2	Understand	CO5
24	Name the environmental consideration associated with the deployment of wind and solar energy systems.	BTL-2	Understand	CO5
	Part-B (16 Marks)			
1	Design a wind farm layout considering factors such as wind patterns, turbine placement, and grid connection points. Discuss the key considerations and challenges in optimizing the efficiency of the wind farm.	BTL-4	Analyze	CO5
2	Analyze the challenges associated with grid-related problems during the absorption of wind energy. Propose strategies to address issues such as voltage fluctuations and frequency variations	BTL-3	Apply	CO5
3	Evaluate the role of energy storage systems in addressing intermittency issues related to wind energy absorption into the grid. Discuss the economic implications and potential technological advancements in storage solutions.	BTL-6	Create	CO5
4	Design a grid interfacing arrangement for a wind farm, considering grid codes and standards. Discuss the components involved and their functions in ensuring compliance and optimal performance	BTL-4	Analyze	CO5
5	Evaluate the role of grid codes and standards in shaping the design and operation of grid interfacing arrangements for wind farms. Discuss the implications for developers and operators	BTL-3	Apply	CO5
6	Examine the technical challenges associated with the variability of wind-generated electrical energy. Discuss advanced forecasting techniques and control strategies to optimize the performance of wind power systems.	BTL-2	Understand	CO5
7	Design a control system for wind-generated electrical energy, focusing on addressing operational challenges. Discuss how the control system contributes to grid stability and reliability	BTL-4	Analyze	CO5

8	Evaluate the advantages and challenges of interconnected wind farms. Discuss the impact on grid stability and the role of communication systems in facilitating real-time monitoring and control	BTL-1	Remember	CO5
9	Design a communication system for interconnected wind farms, considering factors such as data transfer, cyber security, and real-time control. Discuss the importance of effective communication in optimizing performance	BTL-2	Understand	CO5
10	Define a hybrid energy system involving wind and other renewable sources. Analyze the benefits of integrating multiple energy sources and discuss challenges related to the hybridization of wind energy	BTL-6	Create	CO5
11	Design a hybrid energy system that combines wind and solar power. Discuss the technical considerations, economic feasibility, and potential environmental benefits of such a system	BTL-2	Understand	CO5
12	Analyze recent advances in building-integrated PV systems. Discuss the architectural benefits and energy efficiency implications of integrating PV technology into building structures	BTL-4	Analyze	CO5
13	Define hybrid system? Discuss the need for hybrid system, its range and its types. (13)	BTL-1	Remember	CO5
14	Evaluate the technical challenges and benefits of grid-connected PV systems. Discuss their impact on overall grid stability, distribution, and the potential for decentralized energy generation (16)	BTL-5	Evaluate	CO5
15	Design a grid-connected PV system for a residential area. Discuss the key components, system sizing considerations, and economic aspects associated with such a system	BTL-6	Create	CO5
16	Examine the impact of net metering on the economic viability of grid-connected PV systems. Discuss its role in encouraging renewable energy adoption and its implications for end-users	BTL-1	Remember	CO5
17	Discuss the advantages and challenges of hybrid energy systems that integrate both PV and other renewable sources. Analyze the optimization strategies and economic aspects associated with such hybrid systems.	BTL-4	Analyze	CO5

Course Outcome

- Ability to understand the basics of wind energy conversion system & solar energy conversion systems
- Ability to implement the appropriate power extraction techniques.
- Ability to apply power electronics to the renewable energy systems
- Ability to understand the grid integration techniques and power quality issues
- Ability to apply the technology and techniques in variety of applications.