## SRM VALLIAMMAI ENGINEERING COLLEGE

An Autonomous Institution

SRM Nagar, Kattankulathur – 603 203

## DEPARTMENT OF CIVIL ENGINEERING

**QUESTION BANK** 



ST3262 – INDUSTRIAL STRUCTURES

M.E STRUCTURAL ENGINEERING

Regulations – 2023

Academic Year 2024–25

Prepared by

Dr. A. Leema Rose, Professor

Prepared by Dr. A. Leema Rose, Professor



# SRM VALLIAMMAI ENGINEERING COLLEGE

An Autonomous Institution

### DEPARTMENT OFCIVIL ENGINEERING

## **OUESTION BANK**

SUBJECT : ST3262 – INDUSTRIAL STRUCTURES

SEM / YEAR: II/ I

# UNIT-I PLANNING AND FUNCTIONAL REQUIREMENTS

Classification of Industries and Industrial structures - planning for Layout Requirements regarding Lighting, Ventilation and Fire Safety - Protection against noise and vibration - Guidelines of Factories Act.

|      | PART-A                                                                                  |             |               |  |
|------|-----------------------------------------------------------------------------------------|-------------|---------------|--|
| Q.No | Questions                                                                               | BT<br>Level | Competence    |  |
| 1.   | List the major components of an industrial building.                                    | BT-1        | Remembering   |  |
| 2.   | List the types of fire hazards.                                                         | BT-1        | Remembering   |  |
| 3.   | Define Ventilation.                                                                     | BT-1        | Remembering   |  |
| 4.   | Sketch a typical layout of a steel industry and mark its salient features.              | BT-1        | Remembering   |  |
| 5.   | Write down the precautions to be undertaken for controlling vibration.                  | BT-1        | Remembering   |  |
| 6.   | Criticize about "Resonance".                                                            | BT-1        | Remembering   |  |
| 7.   | Criticize how protection against noise can be done in industrial Buildings?             | BT-2        | Understanding |  |
| 8.   | Describe classification of industrial structures.                                       | BT-2        | Understanding |  |
| 9.   | State any four preventive measures against fire in industries.                          | BT-2        | Understanding |  |
| 10.  | List the factors that govern the site selection for an industrial building.             | BT-2        | Understanding |  |
| 11.  | Define the terms Frequency & Amplitude.                                                 | BT-2        | Understanding |  |
| 12.  | Evaluate the significance of factories act.                                             | BT-1        | Remembering   |  |
| 13.  | How can be vibrations are measured?                                                     | BT-1        | Remembering   |  |
| 14.  | Classify the different types of structural systems.                                     | BT-1        | Remembering   |  |
| 15.  | Discuss the minimum front open space is to be provided for factory building as per NBC. | BT-2        | Understanding |  |
| 16.  | What are the classification of Building based on occupancy under various groups.        | BT-2        | Understanding |  |

| 17. | State any two requirements for cement industry                                                                                        | BT-1 | Remembering   |
|-----|---------------------------------------------------------------------------------------------------------------------------------------|------|---------------|
| 18. | Illustrate the causes for fire in Industrial Buildings.                                                                               | BT-2 | Understanding |
| 19. | Write the sources of noise in Industries.                                                                                             | BT-1 | Remembering   |
| 20. | Write about factors influencing plant layout.                                                                                         | BT-1 | Remembering   |
| 21. | Discuss any four preventive measures against fire in industries                                                                       | BT-1 | Remembering   |
| 22. | Summarize the major components of an industrial building.                                                                             | BT-1 | Remembering   |
| 23. | List the different types of Primary Industry.                                                                                         | BT-1 | Remembering   |
| 24. | What the industries that are classified under Tertiary industry?                                                                      | BT-2 | Understanding |
|     | PART-B                                                                                                                                |      |               |
| 1.  | Examine in brief the planning, types and elements of an industrial building.                                                          | BT-3 | Applying      |
| 2.  | Classify the industries based on the ownership and investment. Explain with suitable example.                                         | BT 4 | Analyzing     |
| 3.  | Explain the classification of industries based on NSSO & NBC.                                                                         | BT 4 | Analyzing     |
| 4.  | Demonstrate the major guidelines of factories act which forms the base for the industrial structure.                                  | BT-3 | Applying      |
| 5.  | What are the classifications of industrial fire explain in detail??                                                                   | BT 4 | Analyzing     |
| 6.  | Describe the guidelines for industrial buildings from Factories Act.                                                                  | BT-3 | Applying      |
| 7.  | Explain the Methods of providing Ventilation and Protection against noise and Vibration in Industrial Buildings.                      | BT-3 | Applying      |
| 8.  | Demonstrate briefly how the planning for layout requirement is done for an industrial building. Supplement your answer with sketches. | BT 4 | Analyzing     |
| 9.  | Explain in detail about the objective, importance and affecting factors of Plant layout.                                              | BT-3 | Applying      |
| 10. | Discuss about the firefighting equipment types and its uses.                                                                          | BT-3 | Applying      |
|     | Plan and write the safety measures to be used to minimize noise and vibration in industries?                                          | BT 4 | Analyzing     |
|     | Draw a typical layout plan for a steel manufacturing industry. Also explain how ventilation can be planned in an industrial building? | BT-3 | Applying      |
| 13. | List about the technical criteria for the design and basic principles for planning a good layout in a project.                        | BT-3 | Applying      |
| 14. | Discuss in detail about the heat or ignition sources                                                                                  | BT-3 | Applying      |
| 15. | Discuss about the various fire extinguishing agents and extinguishers in detail.                                                      | BT 4 | Analyzing     |

| 16. | Explain the basic requirement of good plant layout?        | BT 4 | Analyzing |
|-----|------------------------------------------------------------|------|-----------|
| 17. | What are the legal provisions involving high noise levels. | BT 3 | Applying  |
| 18. | Explain in detail about the different types of layout.     |      |           |



Prepared by Dr. A. Leema Rose, Professor

|     | <u>UNIT-II INDUSTRIAL BUILDINGS</u>                                                                     |        |               |
|-----|---------------------------------------------------------------------------------------------------------|--------|---------------|
| Ste | el and RCC - Gantry Girder, Crane Girders - Design of Corbels and Nibs -                                | Design | of Staircase. |
| 1.  | State about gantry girder.                                                                              | BT 1   | Remembering   |
| 2.  | Write the minimum rise and tread in residential buildings.                                              | BT 1   | Remembering   |
| 3.  | Write about crane girders.                                                                              | BT 1   | Remembering   |
| 4.  | Explain the loads to be considered for the design of gantry girder.                                     | BT 1   | Remembering   |
| 5.  | Describe corbel and its advantages.                                                                     | BT 1   | Remembering   |
| 6.  | Evaluate the formula for checking the bending stress in corbel.                                         | BT 1   | Remembering   |
| 7.  | Evaluate why impact factor is considered in the computation of loads acting on gantry girder?           | BT 2   | Understanding |
| 8.  | Summarize the major components of an industrial building.                                               | BT 2   | Understanding |
| 9.  | List the various effects of cranes to be considered under imposed loads in the design of gantry girder. | BT 2   | Understanding |
| 10. | Which section is recommended for gantry girder? Why?                                                    | BT 2   | Understanding |
| 11. | How will you calculate the load effects on a stairs waist slab spanning in the longitudinal direction?  | BT 1   | Remembering   |
| 12. | Draw a neat sketch by marking the structural components of staircase.                                   | BT 2   | Understanding |
| 13. | Define (i) Tread (ii) Rise (iii) Going                                                                  | BT 1   | Remembering   |
| 14. | Classify the types of staircases.                                                                       | BT 2   | Understanding |
| 15. | State the functions of corbels.                                                                         | BT 1   | Remembering   |
| 16. | Differentiate corbel and nibs                                                                           | BT 2   | Understanding |
| 17. | Draw the stress - strain diagram of corbel for the evaluation of internal force.                        | BT 1   | Remembering   |
| 18. | Sketch and point out the reinforcement detailing of a corbel.                                           | BT 1   | Remembering   |
| 19. | Sketch the reinforcements in nibs with large loads.                                                     | BT 2   | Understanding |
| 20. | Define drag force.                                                                                      | BT 1   | Remembering   |
| 21. | What are factors considered while selecting site for industrial building.                               | BT 2   | Understanding |

| 22. | List out the points to be considered while planning and designing of industrial building.                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | BT 1 | Remembering   |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------------|
| 23. | Sketch the reinforcements in nibs with lighter loads.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BT 2 | Understanding |
| 24. | What are the loads considered in the design of gantry girder.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BT 2 | Understanding |
| 1   | PART-B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |               |
| 1.  | What is a gantry girder? Explain its components and loading considerations in detail.                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BT 4 | Analyzing     |
| 2.  | Design the gantry girder for mini building carrying an EOT crane for the following data:  Crane capacity = $250 \text{ kN}$ .  Weight of crane excluding track = $200 \text{ kN}$ .  Weight of track = $60 \text{ kN}$ .  Span of Crane between rails = $20 \text{mm}$ Minimum hook approach = $1.1 \text{m}$ Wheel base = $3.4 \text{m}$ Span of Gantry Girder = $7 \text{m}$                                                                                                                                                                                     | BT 3 | Applying      |
|     | Mass of rail section = $30 \text{ kg/m}$<br>Height of rails section = $75 \text{mm}$ .<br>Take $f_y = 250 \text{N/mm}^2$ , $E = 2 \times 10^5 \text{ N/mm}^2$ . Connection design not required.                                                                                                                                                                                                                                                                                                                                                                    |      | m             |
| 3.  | An industrial building is to be provided with a hand operated 50 kN crane facility. The details of the building and the gantry girders are: Longitudinal spacing of columns = 6m, Centre to Centre distance of gantry girders= 12m, Wheel spacing = 3m, Edge distance = 1m, Weight of crane girder = 40 kN, Weight of trolley car = 10 kN. Solve the gantry girder for bending and shear.                                                                                                                                                                          | BT 3 | Applying      |
| 4.  | Design a dog legged staircase for a building in which the vertical distance between the floor is 3.6m. The staircase hall measures 2.5mx5m. The live load may be taken as 2.5kN/m. Use M20 grade concrete and Fe415 steel. Width of each flight is 1.2m                                                                                                                                                                                                                                                                                                            | BT 4 | Analyzing     |
| 5.  | A Longitudinal type of a staircase spans a distance of 3.75 m c/c of beams. The flight consists of 15 steps. Take rise = 175 mm, tread is 250 mm. Assuming grade25 concrete and Fe 415 steel, examine the staircase for a live load of $5 \text{ kN/m}^2$ . Assuming the breadth of the staircase as 1.4m Design the staircase and Sketch the reinforcement details.                                                                                                                                                                                               | BT 3 | Applying      |
| 6.  | An intermediate flight of a staircase is supported only at the edges of landing (support-Perpendicular to the direction of the flight). Height between landings is 1.5m. The Flight has steps consisting of 10 risers (each rise=150mm) and a treads (each tread=250mm). The steps are supported on a waist slab. Landing is 1 m width. Support width is 300 mm each. Examine the waist slab and landing for bending moment alone. Use M20 concrete and Fe 415 steel. Live load on stair is 3.0kN/m². Width of flight = 1.5 m. Design the staircase and Sketch the | BT 3 | Applying      |

|     | reinforcement details                                                                                                                                                                                                                                                                                                                                                                                       |      |           |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 7.  | Mention the components and explain different types of stair case in detail with neat sketch.                                                                                                                                                                                                                                                                                                                | BT 4 | Analyzing |
| 8.  | Explain about Corbel and under what circumstances would you use them? Sketch the reinforcement details.                                                                                                                                                                                                                                                                                                     | BT 4 | Analyzing |
| 9.  | Estimate a corbel to support a factored load of 400 kN at a distance of 200mm from the face of the column. The dimension of the column is 300mm x 400mm. Use M25 and Fe 415 steel.                                                                                                                                                                                                                          | BT 4 | Analyzing |
| 10. | Reproduce the design of a RCC corbel to carry a factored load of 500 kN at a distance 200 mm from the face of a 300 x 300 RCC Column. Use M35 concrete and Fe 415 steel.                                                                                                                                                                                                                                    | BT 3 | Applying  |
| 11. | Design a continuous nib (beam support) projecting from an RCC wall to support a prefabricated slab unit transmitting a service shear froce of $15 kN/m$ , given that the following data Projection of nib = $200 mm$ $A_v = 100 mm$ M30 and Fe415 grade of materials.                                                                                                                                       | BT 3 | Applying  |
| 12. | Design a corbel to support a factored load of 400 kN at a distance of 200mm from the face of the column. The Dimension of the column is 300 x 400mm. use M25 and Fe415.                                                                                                                                                                                                                                     | BT 3 | Applying  |
| 13. | In what way corbel differ from nib. Justify your answer.                                                                                                                                                                                                                                                                                                                                                    | BT 4 | Analyzing |
| 14. | Design a flight of staircase for a school building spanning between the landing beams to suit the following data. Number of steps =12, Tread=300mm,Rise=160mm,Width of the landing beam=400mm.Type of staircase is waist slab type. Materials M20 grade concrete and Fe415 steel.                                                                                                                           | BT 3 | Applying  |
| 15. | Explain in detail about the procedure for design of Nibs.                                                                                                                                                                                                                                                                                                                                                   | BT 3 | Applying  |
| 16. | Explain in detail about the procedure for design of Corbels.                                                                                                                                                                                                                                                                                                                                                | BT 4 | Analyzing |
| 17. | Explain about Nib and under what circumstances would you use them? Sketch the reinforcement details in Nibs with Light loads and large loads.                                                                                                                                                                                                                                                               | BT 4 | Analyzing |
| 18. | A flight of a dog-legged staircase has the following details:  Going =2.25 m  Landing width = 1.25 m  Raise of a flight = 1.5 m Support width = 300 mm  Choosing appropriate dimensions for rise and tread, and taking the flight to span longitudinally between the supports, design the flight.  Assume live load as 3 kN/m². Design the staircase with data's provided. Sketch the reinforcement details | BT 4 | Analyzing |

#### UNIT-III

#### POWER PLANT STRUCTURES

Types of power plants – Containment structures - Cooling Towers - Bunkers and Silos – Pipe Rack supporting structures

#### PART-A 1. BT 1 Explain about the nuclear containment structures? Remembering 2. Evaluate the theories that are adopted for the design of silos. BT 1 Remembering 3. State reasons for the use of elevated steel storage tanks. BT 1 Remembering 4. Write the Cooling Tower Design Consideration in practice. BT 1 Remembering 5. Write the various loads considered in pipe supporting structures. BT 1 Remembering BT 1 6. List the types of cooling towers. Remembering 7. Choose the minimum grade of concrete and steel to be used for nuclear BT 2 Understanding containment structures? Memorize and state the points to be considered while constructing BT 2 Understanding nuclear containment structures? 9. Distinguish between bunker and silo. BT 2 **Understanding** 10. Sketch a typical cooling tower model and name the components. BT 2 Understanding 11. Evaluate the precautionary measures to be considered while constructing BT 1 Remembering nuclear containment structures? Differentiate between free vibration and forced vibration. 12. BT 2 Understanding 13. List the different types of power plants BT 2 Applying 14. List few power companies in India BT 1 Remembering 15. Examine the structural elements of bunker with neat sketch. BT 2 Applying 16. Illustrate the theories used for calculation vertical weight carried by the BT 1 Remembering wall due to compression in silos. 17. Explain about the stresses that the RCC chimney is subjected. BT 2 Applying 18. Write the steps involved in design of rectangular bunkers. BT 1 Remembering

| 19. | Identify the assumptions made in the design of silos by Janssen's theory.                                                                                                                                                                              | BT 1 | Remembering   |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------------|
| 20. | Draw a neat sketch of a bin and list its components.                                                                                                                                                                                                   | BT 2 | Applying      |
| 21. | What are the 3 types of silos?                                                                                                                                                                                                                         | BT 1 | Remembering   |
| 22. | What are silos used for?                                                                                                                                                                                                                               | BT 2 | Understanding |
| 23. | What are the three main types of bunker?                                                                                                                                                                                                               | BT 2 | Understanding |
| 24. | How did silos work?                                                                                                                                                                                                                                    | BT 2 | Understanding |
|     | PART-B                                                                                                                                                                                                                                                 |      |               |
| 1.  | Draw the typical layout of nuclear power plant structures.                                                                                                                                                                                             | BT 4 | Analyzing     |
| 2.  | Explain the design procedure of cooling tower.                                                                                                                                                                                                         | BT 4 | Analyzing     |
| 3.  | Explain the various factors increasing the bin loads.                                                                                                                                                                                                  | BT 3 | Applying      |
| 4.  | Show the design procedure of silos in detail.                                                                                                                                                                                                          | BT 4 | Analyzing     |
| 5.  | In what way, bunker differs from a silo? Explain in detail.                                                                                                                                                                                            | BT 3 | Applying      |
| 6.  | Show the design procedure of bunkers in detail.                                                                                                                                                                                                        | BT 4 | Analyzing     |
| 7.  | Describe the factors to be borne in mind while designing nuclear containment structures.                                                                                                                                                               | BT 4 | Analyzing     |
| 8.  | Describe about cooling towers and its types.                                                                                                                                                                                                           | BT 3 | Applying      |
| 9.  | Write about power plant structures and its types in detail.                                                                                                                                                                                            | BT 3 | Applying      |
| 10. | Describe about the construction methodologies and related aspects of power plant structures.                                                                                                                                                           | BT 4 | Analyzing     |
| 11. | Design a circular cylindrical bunker to store 20 t of coal. Density of coal is 9 kN/m <sup>3</sup> . Angle of repose is 30°. Adopt M 20 grade of concrete and Fe 415 steel. & Sketch the details of reinforcements.                                    | BT 3 | Applying      |
| 12. | What do you mean by cross flow & counter flow in cooling towers?                                                                                                                                                                                       | BT 4 | Analyzing     |
| 13. | Analyze the concept of AIRY'S Theory for the design of bunkers and silos.                                                                                                                                                                              | BT 4 | Analyzing     |
| 14. | Design the side walls and hopper bottom of 3mx3m square bunker to store 30 tonnes of coal. Density of coal = 9 kN/m³. Angle of repose = 30° Degree. Adopt M20 grade of concrete and Fe415 HYSD bar. Sketch the details of reinforcement in the bunker. | BT 3 | Applying      |

| 15. | Enumerate in detail about the difference between Bunker's and Silos.                                                                                                                                            | BT 4 | Analyzing |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 16. | Design the side walls of a rectangular bunker of capacity 300kN to store coal using M20 concrete and Fe415 steel. Given unit weight of coal = $8 \text{ kN/m}^3$ , angle of repose of coal = $25^0$ .           | BT 3 | Applying  |
| 17. | Design the hopper bottom of a rectangular bunker of capacity 300kN to store coal using M20 concrete and Fe415 steel. Given unit weight of coal $= 8 \text{ kN/m}^3$ , angle of repose of coal $= 25^0$ .        | BT 4 | Analyzing |
| 18. | Design the side walls and hopper bottom of a circular bunker of capacity 300 kN to store coal using M20 concrete and Fe415 steel. Give the unit weight of coal = $8kN/m^3$ , angle of repose of coal = $25^0$ . | BT 4 | Analyzing |



#### UNIT-4 TRANSMISSION LINE STRUCTURES AND CHIMNEYS Analysis and design of steel monopoles, transmission line towers — Sag and Tension calculations. Methods of tower testing – Design of self-supporting and guyed chimney, Design of Chimney bases. List the components of power cables. BT 1 | Remembering 2. Classify the types of chimneys. BT 1 Remembering 3. Draw a neat sketch of a single diagonal braced tower. BT 1 Remembering 4. Justify why is lining provided for chimneys? BT 1 Remembering 5. Discuss the factors for the stress developed in Chimney. BT 1 Remembering 6. BT 1 Remembering Define sag in towers. Understanding 7. Evaluate the factor of safety adopted for the design of structural BT 2 members of steel transmission line towers? 8. Write the types of structures which support the electric power BT 2 Understanding transmission lines. Define the term: wind span and Weight span 9. BT 2 Understanding 10. List the types of towers recommended as per the codal provisions. BT 2 Understanding 11. Describe what do you understand by broken wire condition? BT 1 Remembering 12. Criticize the transmission line towers? BT 2 Understanding 13. Write short notes on guyed chimneys. BT 1 Remembering Write the different types of power cables? 14. BT 2 Understanding 15. Explain about the requirements of substation structures BT 1 Remembering 16. List the points to be considered while selecting a site for substation BT 2 Understanding

BT 2

BT 1

BT 1

Understanding

Remembering

Remembering

BT 2 Understanding

Examine the advantages of fire brick lining in RC Chimneys.

List the materials used for constructing substation structures.

Estimate the wind forces on 60m high tower with a basic wind speed of

Mention the components of self-supporting chimney with neat sketch.

17.

18.

19.

20.

45m/sec.

| 21. | What are the failures of chimney?                                                                                                                                                                                                                                                                                                                                                        | BT 2 | Understanding |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------------|
| 22. | Where is chimney used?                                                                                                                                                                                                                                                                                                                                                                   | BT 1 | Remembering   |
| 23. | What are the dangers of a chimney?                                                                                                                                                                                                                                                                                                                                                       | BT 2 | Understanding |
| 24. | What are the two types of transmission lines?                                                                                                                                                                                                                                                                                                                                            | BT 2 | Understanding |
|     | PART-B                                                                                                                                                                                                                                                                                                                                                                                   |      |               |
| 1.  | Illustrate with sketches describe the various lattice tower configurations with bracing systems.                                                                                                                                                                                                                                                                                         | BT 4 | Analyzing     |
| 2.  | Enlist and explain in detail about the Main Components of Transmission Tower.                                                                                                                                                                                                                                                                                                            | BT 3 | Applying      |
| 3.  | Discuss about the design data guidelines for transmission line towers.                                                                                                                                                                                                                                                                                                                   | BT 3 | Applying      |
| 4.  | Explain the following  a) Self-supporting tower b) Guyed towers c) Monopole                                                                                                                                                                                                                                                                                                              | BT 4 | Analyzing     |
| 5.  | Show and explain the forces acting on steel chimney                                                                                                                                                                                                                                                                                                                                      | BT 3 | Applying      |
| 6.  | Explain about loading and load combinations in transmission line towers?                                                                                                                                                                                                                                                                                                                 | BT 3 | Applying      |
| 7.  | Summarize the different bracing systems adopted in transmission line tower.                                                                                                                                                                                                                                                                                                              | BT 4 | Analyzing     |
| 8.  | List and explain the step by step design procedure of Chimney.                                                                                                                                                                                                                                                                                                                           | BT 4 | Analyzing     |
| 9.  | Reproduce the design of a self-supporting steel chimney for a height of 40 m above foundation with diameter of cylindrical portion 2 m. Assume thickness of lining as 100 mm and wind pressure as 1.5 kN/m <sup>2</sup> .                                                                                                                                                                | BT 4 | Analyzing     |
| 10. | A concrete chimney of height 80m with external diameter of shaft being 4m at top and 5m at bottom is required in a place where wind intensity is 1.5kN/m². Thickness of fire lining is 10 cm. temperature differences between inside and outside of the shaft is 75°C. Permissible bearing pressure on soil at site is 150kN/m². Adopt M25 and Fe415 and design the base of the chimney. | BT 3 | Applying      |
| 11. | Distinguish in what way design of self-supporting chimney and guyed chimney differ?                                                                                                                                                                                                                                                                                                      | BT 3 | Applying      |
| 12. | Analyze and design a transmission line tower with sag-tension Calculation with a example.                                                                                                                                                                                                                                                                                                | BT 3 | Applying      |
| 13. | Describe the behavior of RC and Steel chimney.                                                                                                                                                                                                                                                                                                                                           | BT 4 | Analyzing     |
| 14. | Discuss about power cables & control cable in transmission line towers.                                                                                                                                                                                                                                                                                                                  |      |               |

| - |     |                                                                               |      |           |
|---|-----|-------------------------------------------------------------------------------|------|-----------|
|   | 15. |                                                                               | BT 3 | Applying  |
|   |     | is located at delhi. The diameter of cylindrical part of chimney is 3m.       |      |           |
|   |     | the foundation has to rest on medium soil having bearing capacity of          |      |           |
|   |     | 200kN/m <sup>2</sup> . The thickness of fire brickwork lining is 100mm and is |      |           |
|   |     | supported by the stack throughout the height. The topography of the site      |      |           |
|   |     | is almost flat and the location is of terrain category 2.                     |      |           |
|   | 16. | Explain about the various forces acting on the self-supporting steel          | BT 4 | Analyzing |
|   |     | chimney?                                                                      |      |           |
|   | 17. | Described about the various flue opening in steel chimney.                    | BT 4 | Analyzing |
|   |     | - MISINE FA                                                                   |      | Ç         |
|   | 18. | Explain the various methods adopted for testing of towers.                    | BT 3 | Applying  |
|   |     |                                                                               |      |           |



## UNIT-5 FOUNDATION

Foundation for Towers, Chimneys and Cooling Towers –Design of Block foundations for machines –Design of Turbo Generator Foundation

| Desig | n of Turbo Generator Foundation.                                                                    |      |               |
|-------|-----------------------------------------------------------------------------------------------------|------|---------------|
| 1.    | State the general requirements of machine foundations?                                              | BT 1 | Remembering   |
| 2.    | Illustrate the points to be considered in the design of foundation for towers?                      | BT 1 | Remembering   |
| 3.    | Evaluate the various parameters influencing the design of a machine foundation.                     | BT 1 | Remembering   |
| 4.    | Describe about turbo-generator foundation.                                                          | BT 1 | Remembering   |
| 5.    | Categorize the types of loads to be considered for tower foundation                                 | BT 1 | Remembering   |
| 6.    | List and name the methods used for dynamic investigation of soil at the site.                       | BT 1 | Remembering   |
| 7.    | How the safety of tower foundation is checked against uplift?                                       | BT 2 | Understanding |
| 8.    | List the types of machine foundation.                                                               | BT 2 | Understanding |
| 9.    | Discuss the IS codes to be followed for the satisfactory performance of a cooling tower foundation? | BT 2 | Understanding |
| 10.   | Discuss about foundation used for self-supporting steel chimney?                                    | BT 2 | Understanding |
| 11.   | Enlist critical parameters of transmission line towers.                                             | BT 1 | Remembering   |
| 12.   | Discuss the factors to be checked on tower foundation?                                              | BT 1 | Remembering   |
| 13.   | Write the formula used for checking the uplift capacity of tower foundation.                        | BT 2 | Applying      |
| 14.   | Which types of foundation is well suited for turbo generator machines.                              | BT 1 | Remembering   |
| 15.   | Indicate the general design criteria for the satisfactory performance of a tower foundation.        | BT 2 | Applying      |
| 16.   | Define solidity ratio.                                                                              | BT 1 | Remembering   |
| 17.   | Explain the method of selecting a proper type of foundation for transmission.                       | BT 1 | Remembering   |
| 18.   | Write the types of tower foundation?                                                                | BT 2 | Applying      |
|       |                                                                                                     |      |               |

| 19. | Demonstrate the stability analysis for tower foundation.                                                                                                                                                                                                                                                                                                                                                                                                                                 | BT 1 | Remembering   |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------------|
| 20. | Write about Pad Foundation.                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BT 2 | Applying      |
| 21. | How to design a tower foundation?                                                                                                                                                                                                                                                                                                                                                                                                                                                        | BT 1 | Remembering   |
| 22. | What is the name of Tower Foundation?                                                                                                                                                                                                                                                                                                                                                                                                                                                    | BT 2 | Understanding |
| 23. | What makes a good tower structure?                                                                                                                                                                                                                                                                                                                                                                                                                                                       | BT 2 | Understanding |
| 24. | What is the main function of tower?                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BT 2 | Understanding |
|     | PART-B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |               |
| 1.  | Discuss the design criteria involved while designing foundation for Reciprocating machine foundation.                                                                                                                                                                                                                                                                                                                                                                                    | BT 4 | Analyzing     |
| 2.  | Explain in detail different types of machine foundation.                                                                                                                                                                                                                                                                                                                                                                                                                                 | BT 4 | Analyzing     |
| 3.  | Enumerate the step by step design criteria for turbo generator foundation.                                                                                                                                                                                                                                                                                                                                                                                                               | BT 3 | Applying      |
| 4.  | Illustrate the method of selecting a proper type of foundation?                                                                                                                                                                                                                                                                                                                                                                                                                          | BT 4 | Analyzing     |
| 5.  | Describe the important codal stipulations for R.C.C Tower foundations?                                                                                                                                                                                                                                                                                                                                                                                                                   | BT 3 | Applying      |
| 6.  | Design the foundation for a lathe. Which has the following characteristics. Weight of machine = 150 kN  Base area = 1.2mx5.0m, Height of CG of machine = 0.9m  The machine supported by 3 pairs of bolts @  2.5mc/c Allowable amplitude = 0.1mm  Use M20 grade concrete and Fe415  steel Speed of the machine =1200rpm  Mass moment of Inertia I <sub>mm</sub> = 7500 kg/m <sup>3</sup> Vertical Excitation Force F <sub>z</sub> =50 kN  Allowable Bearing Stress = 110kN/m <sup>2</sup> | BT 4 | Analyzing     |
| 7.  | Employ how stability against overturning, uplift and lateral thrust is checked in tower foundation design.                                                                                                                                                                                                                                                                                                                                                                               | BT 4 | Analyzing     |
| 8.  | Write down the design procedures adopted for the foundation of chimneys.                                                                                                                                                                                                                                                                                                                                                                                                                 | BT 3 | Applying      |
| 9.  | Explain design principles adopted for foundation of cooling towers.                                                                                                                                                                                                                                                                                                                                                                                                                      | BT 3 | Applying      |
| 10. | Write in detail about the Masts and Trestles.                                                                                                                                                                                                                                                                                                                                                                                                                                            | BT 4 | Analyzing     |
| 11. | Outline the general philosophy in the design of Concrete Pad & chimney foundation.                                                                                                                                                                                                                                                                                                                                                                                                       | BT 3 | Applying      |

| 12. | Give the necessary Basic Concept and forces action on Transmission                       | BT 4   | Analyzing |
|-----|------------------------------------------------------------------------------------------|--------|-----------|
|     | Tower Foundation.                                                                        |        |           |
| 13. | Examine the vibration effects to be considered in design of machine                      | BT 4   | Analyzing |
|     | foundation.                                                                              |        |           |
| 14. | Record the bulb of pressure concept proposed by "Balakrishna Rao" for                    | BT 3   | Applying  |
|     | the design of Machine foundations.                                                       |        |           |
| 15. | Design the forces on tower leg                                                           | BT 4   | Analyzing |
|     | Ultimate compression: 147t                                                               |        |           |
|     | Ultimate tension: 121.25t                                                                |        |           |
|     | Ultimate shear: 8.25t                                                                    |        |           |
|     | Soil data                                                                                |        |           |
|     | Soil Type: Hard laterite                                                                 |        |           |
|     | Site location: Mangalore                                                                 |        |           |
|     | In-situ N for 5m depth is >75                                                            |        |           |
|     | In-situ density = $2.05 \text{ t/m}^3$                                                   |        |           |
|     | $\phi = 40^{\circ}$ , $C = 0.52 \text{ kg/cm}^2$ , $N_c = 75$ , $N_q = 64$ , $N_r = 104$ |        |           |
|     | Ground water table at 6.5 m below ground level.                                          | $\sim$ |           |
| 16. | Design the forces on tower leg                                                           | BT 3   | Applying  |
|     | Ultimate compression: 81.5t                                                              |        |           |
|     | Ultimate tension: 63.0t                                                                  | 1      |           |
|     | Ultimate shear: 1.8t                                                                     |        |           |
|     | Soil data                                                                                |        |           |
|     | Soil Type : silt clay(medium)                                                            |        |           |
|     | Site location: Annanagar (Madras).                                                       |        |           |
|     | In-situ N <sub>corrected</sub> for overburden upto 5m depth = 7.                         |        |           |
|     | In-situ density = $1.85 \text{ t/m}^3$ , C = $0.42 \text{ kg/cm}^2$ ,                    |        |           |
|     | Ground water table at 3.5 m below ground level.                                          |        |           |
| 17. | Explain in detail about the various steps adopted for considering the                    | BT 4   | Analyzing |
|     | stability analysis of tower foundation.                                                  |        |           |
| 18. | Discuss in detail the various types of foundations used for towers.                      | BT 4   | Analyzing |
|     |                                                                                          |        |           |
|     |                                                                                          |        |           |